skip to main content

Title: NOEMA Detection of Circumnuclear Molecular Gas in X-Ray Weak Dual Active Galactic Nuclei: No Evidence for Heavy Obscuration
Abstract

Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relatively more » weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion.

« less
Authors:
; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10392843
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
1
Page Range or eLocation-ID:
Article No. 50
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT; $N_{\rm H}\ge 10^{24}\rm \, cm^{-2}$) peaks at $74_{-19}^{+14}{{\ \rm per\ cent}}$ at a late merger stage, prior to coalescence, when the nuclei have projected separations (dsep) of 0.4–6 kpc. A similar peak is also observed in the median NH [$(1.6\pm 0.5)\times 10^{24}\rm \, cm^{-2}$]. The vast majority ($85^{+7}_{-9}{{\ \rm per\ cent}}$) of the AGNs in the final merger stages (dsep ≲ 10 kpc) are heavily obscured ($N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$), and the median NH of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that thesemore »objects have very obscured nuclear environments, with the $N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$ gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity ($L_{2-10}\lesssim 10^{43}\rm \, erg\, s^{-1}$) AGNs in U/LIRGs.« less
  2. Abstract

    Active galactic nucleus (AGN) feedback is postulated as a key mechanism for regulating star formation within galaxies. Studying the physical properties of the outflowing gas from AGNs is thus crucial for understanding the coevolution of galaxies and supermassive black holes. Here we report 55 pc resolution ALMA neutral atomic carbon [Ci]3P13P0observations toward the central 1 kpc of the nearby Type 2 Seyfert galaxy NGC 1068, supplemented by 55 pc resolution CO(J= 1−0) observations. We find that [Ci] emission within the central kiloparsec is strongly enhanced by a factor of >5 compared to the typical [Ci]/CO intensity ratio of ∼0.2 for nearby starburst galaxies (in units of brightness temperature). The most [Ci]-enhanced gas (ratio > 1) exhibits a kiloparsec-scale elongated structure centered at the AGN that matches the known biconical ionized gas outflow entraining molecular gas in the disk. A truncated, decelerating bicone model explains well the kinematics of the elongated structure, indicating that the [Ci] enhancement is predominantly driven by the interaction between the ISM in the disk and the highly inclined ionized gas outflow (which is likely driven by the radio jet). Our results strongly favor the “CO dissociation scenario” rather than the “in situ C formation” one,more »which prefers a perfect bicone geometry. We suggest that the high-[Ci]/CO intensity ratio gas in NGC 1068 directly traces ISM in the disk that is currently dissociated and entrained by the jet and the outflow, i.e., the “negative” effect of the AGN feedback.

    « less
  3. ABSTRACT

    The mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) is probing supermassive black holes (SMBHs) in galaxies across the Hubble sequence via molecular gas dynamics. We present the first WISDOM study of a luminous infrared galaxy with an active galactic nuclei (AGNs): Fairall 49. We use new ALMA observations of the CO(2 − 1) line with a spatial resolution of ∼80 pc together with ancillary HST imaging. We reach the following results: (1) The CO kinematics are well described by a regularly rotating gas disc with a radial inflow motion, suggesting weak feedback on the cold gas from both AGN and starburst activity; (2) The dynamically inferred SMBH mass is 1.6 ± 0.4(rnd) ± 0.8(sys) × 108 M⊙ assuming that we have accurately subtracted the AGN and starburst light contributions, which have a luminosity of ∼109 L⊙; (3) The SMBH mass agrees with the SMBH−stellar mass relation but is ∼50 times higher than previous estimates from X-ray variability; (4) The dynamically inferred molecular gas mass is 30 times smaller than that inferred from adopting the Galactic CO-to-H2 conversion factor (XCO) for thermalized gas, suggesting low values of XCO; (5) the molecular gas inflow rate increases steadily with radius and may be as high as ∼5 M⊙ yr−1. This work highlights themore »potential of using high-resolution CO data to estimate, in addition to SMBH masses, the XCO factor, and gas inflow rates in nearby galaxies.

    « less
  4. Abstract

    We test the merger-induced dual active galactic nuclei (dAGNs) paradigm using a sample of 35 radio galaxy pairs from the Sloan Digital Sky Survey Stripe 82 field. Using Keck optical spectroscopy, we confirm 21 pairs have consistent redshifts, constituting kinematic pairs; the remaining 14 pairs are line-of-sight projections. We classify the optical spectral signatures via emission line ratios, equivalent widths, and excess of radio power above star formation predicted outputs. We find six galaxies are classified as LINERs and seven are AGN/starburst composites. Most of the LINERs are retired galaxies, while the composites likely have AGN contribution. All of the kinematic pairs exhibit radio power more than 10× above the level expected from just star formation, suggestive of a radio AGN contribution. We also analyze high-resolution (0.″3) imaging at 6 GHz from the NSF’s Karl G. Jansky Very Large Array for 17 of the kinematic pairs. We find six pairs (two new, four previously known) host two separate radio cores, confirming their status as dAGNs. The remaining 11 pairs contain single AGNs, with most exhibiting prominent jets/lobes overlapping their companion. Our final census indicates a dAGN duty cycle slightly higher than predictions of purely stochastic fueling, although a largermore »sample (potentially culled from VLASS) is needed to fully address the dAGN fraction. We conclude that while dAGNs in the Stripe 82 field are rare, the merger process plays some role in their triggering and it facilitates low to moderate levels of accretion.

    « less
  5. Abstract

    Active galactic nuclei (AGNs) feedback models are generally calibrated to reproduce galaxy observables such as the stellar mass function and the bimodality in galaxy colors. We use variations of the AGN feedback implementations in the IllustrisTNG (TNG) andSimbacosmological hydrodynamic simulations to show that the low-redshift Lyαforest can provide constraints on the impact of AGN feedback. We show that TNG overpredicts the number density of absorbers at column densitiesNHI< 1014cm−2compared to data from the Cosmic Origins Spectrograph (in agreement with previous work), and we demonstrate explicitly that its kinetic feedback mode, which is primarily responsible for galaxy quenching, has a negligible impact on the column density distribution (CDD) of absorbers. In contrast, we show that the fiducialSimbamodel, which includes AGN jet feedback, is the preferred fit to the observed CDD of thez= 0.1 Lyαforest across 5 orders of magnitude in column density. We show that theSimbaresults with jets produce a quantitatively better fit to the observational data than theSimbaresults without jets, even when the ultraviolet background is left as a free parameter. AGN jets inSimbaare high speed, collimated, weakly interacting with the interstellar medium (via brief hydrodynamic decoupling), and heated to the halo virial temperature. Collectively these properties result inmore »stronger long-range impacts on the intergalactic medium when compared to TNG’s kinetic feedback mode, which drives isotropic winds with lower velocities at the galactic radius. Our results suggest that the low-redshift Lyαforest provides plausible evidence for long-range AGN jet feedback.

    « less