skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Torr-level, seedless, non-resonant velocity distribution function measurement with a dual-color, single-shot coherent Rayleigh–Brillouin scattering scheme
Abstract A two order of magnitude spectral acquisition improvement in velocity distribution function measurement is demonstrated with a novel single-shot, dual-color coherent Rayleigh–Brillouin scattering (CRBS) scheme. By performing this non-resonant and seedless spectral diagnostic technique, capable of obtaining a spectrum in 300  ns, we demonstrate accurate temperature (ranging from 300 K to 500 K) and pressure (ranging from 760 Torr down to 1 Torr) measurement capabilities, for a variety of atomic, molecular and multispecies gases. This demonstrated gas thermodynamic characterization capability of the dual-color CRBS scheme over broad ranges of pressure and temperature for a variety of gases is anticipated to be of great interest to a plethora of fields, ranging from aerospace applications to low-temperature plasmas, providing with an accurate measurement of physical properties of neutral particles, for a range of gases.  more » « less
Award ID(s):
1903481
PAR ID:
10392844
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
7
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 074001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ C 2 ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ C ħ × -action. First, we find a two-parameter family$$X_{k,l}$$ X k , l of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] is obtained via direct limit$$l\longrightarrow \infty $$ l and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ ħ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ P 2 with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual. 
    more » « less
  2. Abstract A search is reported for charge-parity$$CP$$ CP violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ fb - 1 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ D + D 0 π + and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D - D ¯ 0 π - . The$$CP$$ CP asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ A CP ( K S 0 K S 0 ) = ( 6.2 ± 3.0 ± 0.2 ± 0.8 ) % , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ CP asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D 0 K S 0 π + π - decay. This is the first$$CP$$ CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state. 
    more » « less
  3. Abstract We define a type of modulus$$\operatorname {dMod}_p$$ dMod p for Lipschitz surfaces based on$$L^p$$ L p -integrable measurable differential forms, generalizing the vector modulus of Aikawa and Ohtsuka. We show that this modulus satisfies a homological duality theorem, where for Hölder conjugate exponents$$p, q \in (1, \infty )$$ p , q ( 1 , ) , every relative Lipschitzk-homology classchas a unique dual Lipschitz$$(n-k)$$ ( n - k ) -homology class$$c'$$ c such that$$\operatorname {dMod}_p^{1/p}(c) \operatorname {dMod}_q^{1/q}(c') = 1$$ dMod p 1 / p ( c ) dMod q 1 / q ( c ) = 1 and the Poincaré dual ofcmaps$$c'$$ c to 1. As$$\operatorname {dMod}_p$$ dMod p is larger than the classical surface modulus$$\operatorname {Mod}_p$$ Mod p , we immediately recover a more general version of the estimate$$\operatorname {Mod}_p^{1/p}(c) \operatorname {Mod}_q^{1/q}(c') \le 1$$ Mod p 1 / p ( c ) Mod q 1 / q ( c ) 1 , which appears in works by Freedman and He and by Lohvansuu. Our theory is formulated in the general setting of Lipschitz Riemannian manifolds, though our results appear new in the smooth setting as well. We also provide a characterization of closed and exact Sobolev forms on Lipschitz manifolds based on integration over Lipschitzk-chains. 
    more » « less
  4. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  5. Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ K 0 = 46.9 GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ K 0 = 4 for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ V 0 = 322.2  Å3$$,$$ , $${K}_{0}=24.8$$ K 0 = 24.8 GPa and$${K}_{0}^{\prime}=4.0$$ K 0 = 4.0 using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure. 
    more » « less