skip to main content


Title: Automatic Interpretable Personalized Learning
Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms.  more » « less
Award ID(s):
1940236
NSF-PAR ID:
10392881
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
L@S '22: Proceedings of the Ninth ACM Conference on Learning @ Scale
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less
  2. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less
  3. This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our algorithm seeks to balance these objectives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSISTments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to balance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/. 
    more » « less
  4. This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our algorithm seeks to balance these objectives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSISTments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to balance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/. 
    more » « less
  5. This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our algorithm seeks to balance these objectives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSISTments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to balance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/. 
    more » « less