skip to main content


Title: The Response of Ocean Skin Temperature to Rain: Observations and Implications for Parameterization of Rain‐Induced Fluxes
Abstract

Rainfall alters the physical and chemical properties of the surface ocean, and its effect on ocean skin temperature and surface heat fluxes is poorly represented in many air‐sea interaction models. We present radiometric observations of ocean skin temperature, near‐surface (5 cm) temperature from a towed thermistor, and bulk atmospheric and oceanic variables, for 69 rain events observed over the course of 4 months in the Indian Ocean as part of the DYNAMO project. We test a state‐of‐the‐art prognostic model developed by Bellenger et al. (2017,https://doi.org/10.1002/2016JC012429) to predict ocean skin temperature in the presence of rain, and demonstrate a physically motivated modification to the model that improves its performance with increasing rain rate. We characterize the vertical skin‐bulk temperature gradient induced by rain and find that it levels off at high rain rates, suggestive of a transition in skin‐layer physics that has been previously hypothesized in the literature. We also quantify the small bias that will be present in turbulent sensible heat fluxes parameterized from ocean temperature measurements made at typical “bulk” depths during a rain event. Finally, a wind threshold is observed above which the surface ocean remains well‐mixed during a rain event; however, the skin temperature is observed to decrease at all wind speeds in the presence of rain.

 
more » « less
Award ID(s):
2049546
NSF-PAR ID:
10392917
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
1
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The 400 worst‐case severe environments for surface charging detected at Los Alamos National Laboratory satellites during the years of 1990–2005 as binned by the definitions of four criteria developed by Matéo‐Vélez et al. (2018,https://doi.org/10.1002/2017sw001689) and the solar wind and Interplanetary Magnetic Field (IMF) parameters and geomagnetic activity indices are analyzed. The conducted analysis shows that only Auroral Electrojet/Auroral Lower index determines the highest risk for severe environments for surface charging to happen. The presence of a substorm with the southward turning pattern in IMFindicates that the environment can be severe for surface charging to occur but this environment will not depend on whether a substorm was moderate or intense. No clear dependence on IMFis found for risk to a severe environment to occur. Appearances of severe environments for surface charging do not necessarily require high values ofKp(Planetarische Kennziffer) and no storm is needed for such an event to be detected. Among solar wind parameters, solar wind velocityis directly related to the highest risk of severe environments, dependent on thevalue; and number densityis of no importance. Two criteria for severe environment events based on the enhancements of low energy particle fluxes exhibit clearer dependencies on the solar wind and IMF parameters and geomagnetic activity indices with more distinct patterns in their time history.

     
    more » « less
  2. Abstract

    Simulations of the Argentine Basin have large uncertainties associated with quantities such as air‐sea exchanges of heat and carbon in current generation climate models and ocean reanalysis products. This is due to the complex topography, profound undersampling until recent years, and strong currents and mixing of subpolar and subtropical water masses in the basin. Because mixing of water masses is important here, model resolution is hypothesized to play an important role in estimating ocean quantities and determining overall budgets. We construct three regional ocean models with biogeochemistry at 1/3°, 1/6°, and 1/12° resolutions for the year 2017 to investigate heat and carbon dynamics in the region and determine the effect of model resolution on these dynamics. Initial conditions and boundary forcing from BSOSE (the Biogeochemical Southern Ocean State Estimate (Verdy & Mazloff, 2017),https://doi.org/10.1002/2016JC012650) and atmospheric forcing from ERA5 are used. The models are evaluated for accuracy by comparing output to Argo and BGC‐Argo float profiles, BSOSE, and other reanalyses and mapped products. We then quantify the effect of resolution on model upper ocean heat and carbon transport and the associated air‐sea exchanges. We determine that increasing the resolution from 1/3° to 1/12° enhances the upward vertical transport and surface exchanges of heat but causes no significant effect on surface carbon fluxes despite enhancing downward transport of anomalous DIC.

     
    more » « less
  3. Abstract

    An extraordinary strong wind‐driven upwelling event occurred in Lake Superior in summer of 2010 when the lake was strongly stratified. In this paper, a detailed three‐dimensional (3‐D) investigation of the current and thermal structures during the upwelling event was conducted using in situ observations, remote sensing products, and the results of a long‐term numerical simulation. A 3‐D finite‐volume coupled ice–ocean model tailored for the Laurentian Great Lakes was employed for this purpose. The model was validated with temperature observations at National Oceanic and Atmospheric Administration buoys and mooring data from 2010. The upwelling event observed in satellite imagery and at a mooring station was reproduced by the model, showing a cooling of as much as 10°C in August 2010 along the northwestern coast. The relationship between the alongshore wind and the offshore thermocline displacement (upwelling front) derived in theoretical work (Csanady, 1977,https://doi.org/10.1029/JC082i003p00397) was used to calculate upwelling front movement offshore and found to be in in close agreement with model prediction. A significant correlation between alongshore wind stress and lake temperature change in the upwelling zone was found with a correlation coefficient of −0.87. A simple linear heat balance model explained most of variability in temperature.

     
    more » « less
  4. Abstract

    We present modeling results of tube and knot (T&K) dynamics accompanying thermospheric Kelvin Helmholtz Instabilities (KHI) in an event captured by the 2018 Super Soaker campaign (R. L. Mesquita et al., 2020,https://doi.org/10.1029/2020JA027972). Chemical tracers released by a rocketsonde on 26 January 2018 showed coherent KHI in the lower thermosphere that rapidly deteriorated within 45–90 s. Using wind and temperature data from the event, we conducted high resolution direct numerical simulations (DNS) employing both wide and narrow spanwise domains to facilitate (wide domain case) and prohibit (narrow domain case) the axial deformation of KH billows that allows tubes and knots to form. KHI T&K dynamics are shown to produce accelerated instability evolution consistent with the observations, achieving peak dissipation rates nearly two times larger and 1.8 buoyancy periods faster than axially uniform KHI generated by the same initial conditions. Rapidly evolving twist waves are revealed to drive the transition to turbulence; their evolution precludes the formation of secondary convective instabilities and secondary KHI seen to dominate the turbulence evolution in artificially constrained laboratory and simulation environments. T&K dynamics extract more kinetic energy from the background environment and yield greater irreversible energy exchange and entropy production, yet they do so with weaker mixing efficiency due to greater energy dissipation. The results suggest that enhanced mixing from thermospheric KHI T&K events could account for the discrepancy between modeled and observed mixing in the lower thermosphere (Garcia et al., 2014,https://doi.org/10.1002/2013JD021208; Liu, 2021,https://doi.org/10.1029/2020GL091474) and merits further study.

     
    more » « less
  5. Abstract

    The sea ice component of the Community Earth System Model version 2 (CESM2) contains new “mushy‐layer” physics that simulates prognostic salinity in the sea ice, with consequent modifications to sea ice thermodynamics and the treatment of melt ponds. The changes to the sea ice model and their influence on coupled model simulations are described here. Two simulations were performed to assess the changes in the vertical thermodynamics formulation with prognostic salinity compared to a constant salinity profile. Inclusion of the mushy layer thermodynamics of Turner et al. (2013,https://doi.org/10.1002/jgrc.20171) in a fully coupled Earth system model produces thicker and more extensive sea ice in the Arctic, with relatively unchanged sea ice in the Antarctic compared to simulations using a constant salinity profile. While this is consistent with the findings of uncoupled ice‐ocean model studies, the role of the frazil and congelation growth is more important in fully coupled simulations. Melt pond drainage is also an important contribution to simulated ice thickness differences as also found in the uncoupled simulations of Turner and Hunke (2015;https://doi.org/10.1002/2014JC010358). However, it is an interaction of the ponds and the snow fraction that impacts the surface albedo and hence the top melt. The changes in the thermodynamics and resulting ice state modify the ice‐ocean‐atmosphere fluxes with impacts on the atmosphere and ocean states, particularly temperature.

     
    more » « less