Abstract Photo‐affinity adsorbents (i.e., translucent matrices functionalized with ligands featuring light‐controlled biorecognition) represent a futuristic technology for purifying labile biologics. In this study, a framework for prototyping photo‐affinity adsorbents comprising azobenzene‐cyclized peptides (ACPs) conjugated to translucent porous beads (ChemMatrix) is presented. This approach combines computational and experimental tools for designing ACPs and investigating their light‐controlled isomerization kinetics and protein biorecognition. First, a modular design for tailoring ACP's conformation, facilitating sequencing, and streamlining the in silico modeling of cis/trans isomers and their differential protein binding is introduced. Then, a spectroscopic system for measuring the photo‐isomerization kinetics of ACPs on ChemMatrix beads is reported; using this device, it is demonstrated that the isomerization at different light intensities is correlated to the cyclization geometry, specifically the energy difference of trans versus cis isomers as calculated in silico. Also, a microfluidic device for sorting ACP‐ChemMatrix beads to select and validate photo‐affinity ligands using Vascular Cell Adhesion Molecule 1 (VCAM‐1) as target protein and cycloAZOB[GVHAKQHRN‐K*]‐G‐ChemMatrix as model photo‐affinity adsorbent is presented. The proposed ACPs exhibit rapid and defined light‐controlled isomerization and biorecognition. Controlling the adsorption and release of VCAM‐1 using light demonstrates the potential of photo‐affinity adsorbents for targets whose biochemical liability poses challenges to its purification. 
                        more » 
                        « less   
                    
                            
                            Molecular Engineering of Cyclic Azobenzene‐Peptide Hybrid Ligands for the Purification of Human Blood Factor VIII via Photo‐Affinity Chromatography
                        
                    
    
            Abstract The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene‐peptide (CAP) ligands for the rapid and discrete photo‐responsive capture and release of blood coagulation factor VIII (FVIII). A predictive method—based on amino acid sequence and molecular architecture of CAPs—is developed to correlate the conformation ofcis/trans‐CAP photo‐isomers to FVIII binding and release. Combined in silico ‐ in vitro analysis of FVIII:peptide interactions guide the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G‐cycloAZOB[Lys‐YYKHLYN‐Lys]‐G on translucent chromatographic beads, features high binding capacity (>6 mg of FVIII per mL of resin) and rapid photo‐isomerization kinetics (τ < 30 s) when exposed to 420–450 nm light at the intensity of 0.1 W cm−2. The adsorbent purifies FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life‐saving biotherapeutics. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10393039
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 14
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Multi‐scale calcium (Ca2+) dynamics, exhibiting wide‐ranging temporal kinetics, constitutes a ubiquitous mode of signal transduction. We report a novel endoplasmic‐reticulum (ER)‐targeted Ca2+indicator, R‐CatchER, which showed superior kinetics in vitro (koff≥2×103 s−1,kon≥7×106 M−1 s−1) and in multiple cell types. R‐CatchER captured spatiotemporal ER Ca2+dynamics in neurons and hotspots at dendritic branchpoints, enabled the first report of ER Ca2+oscillations mediated by calcium sensing receptors (CaSRs), and revealed ER Ca2+‐based functional cooperativity of CaSR. We elucidate the mechanism of R‐CatchER and propose a principle to rationally design genetically encoded Ca2+indicators with a single Ca2+‐binding site and fast kinetics by tuning rapid fluorescent‐protein dynamics and the electrostatic potential around the chromophore. The design principle is supported by the development of G‐CatchER2, an upgrade of our previous (G‐)CatchER with improved dynamic range. Our work may facilitate protein design, visualizing Ca2+dynamics, and drug discovery.more » « less
- 
            Abstract We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3−]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.more » « less
- 
            Abstract The catalytic one‐bond isomerization (transposition) of 1‐alkenes is an emerging approach toZ‐2‐alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controllingZselectivity. We propose here a reaction pathway forcis‐Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows highZselectivity for transposition of alpha olefins (e. g., 1‐octene to 2‐octene, 18 : 1Z : Eat 74 % conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3‐hydride shift) pathway, where oxidative addition offac‐(CO)3Mo(PCy3)(η2‐alkene) is followed by hydride migration from one position (cisto allyl C3carbon) to another (cisto allyl C1carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e. g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization.more » « less
- 
            Abstract Sepsis, whole‐body inflammation caused by the contamination of blood by bacteria and endotoxins, affects millions of patients annually with high mortality rates. A recent promising approach to treat sepsis involves the removal of bacteria and endotoxins using extracorporeal blood‐cleansing devices. However, poor specificity, slow recognition of pathogens, and high costs remain the main limitations. Here, the melanin, a biologically derived pigment, is reported for the rapid binding of bacteria and endotoxins from the contaminated blood . This novel approach utilizes the specific binding between Zn2+‐loaded melanin and bacteria/endotoxins with minimal nonspecific interactions with human blood components. Melanin contains various chemical functional groups that allow reversible chelation of metallic ions such as Zn2+via redox reactions. Zn2+enables rapid and specific binding with bacteria/endotoxins due to the strong electrostatic interactions between Zn2+and phosphate ions. The presence of various zinc‐binding proteins on the bacterial cell membrane further enhances the binding. The well‐known biocompatibility and low cost make melanin an ideal material to interface with human blood. Zn2+‐charged melanin can remove 90% ofE. coliand 100% of endotoxin in PBS and human blood. Zn2+‐melanin also demonstrated excellent hemocompatibility shown by protein adsorption, blood coagulation, and hemolysis tests.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
