skip to main content

Title: Generalizable and Interpretable Deep Learning for Network Congestion Prediction
While recent years have witnessed a steady trend of applying Deep Learning (DL) to networking systems, most of the underlying Deep Neural Networks (DNNs) suffer two major limitations. First, they fail to generalize to topologies unseen during training. This lack of generalizability hampers the ability of the DNNs to make good decisions every time the topology of the networking system changes. Second, existing DNNs commonly operate as "blackboxes" that are difficult to interpret by network operators, and hinder their deployment in practice. In this paper, we propose to rely on a recently developed family of graph-based DNNs to address the aforementioned limitations. More specifically, we focus on a network congestion prediction application and apply Graph Attention (GAT) models to make congestion predictions per link using the graph topology and time series of link loads as inputs. Evaluations on three real backbone networks demonstrate the benefits of our proposed approach in terms of prediction accuracy, generalizability, and interpretability.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE 29th International Conference on Network Protocols (ICNP)
Page Range / eLocation ID:
1 to 10
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liane Lewin-Eytan, David Carmel (Ed.)
    Graph convolutional networks (GCNs), aiming to obtain node embeddings by integrating high-order neighborhood information through stacked graph convolution layers, have demonstrated great power in many network analysis tasks such as node classification and link prediction. However, a fundamental weakness of GCNs, that is, topological limitations, including over-smoothing and local homophily of topology, limits their ability to represent networks. Existing studies for solving these topological limitations typically focus only on the convolution of features on network topology, which inevitably relies heavily on network structures. Moreover, most networks are text-rich, so it is important to integrate not only document-level information, but also the local text information which is particularly significant while often ignored by the existing methods. To solve these limitations, we propose BiTe-GCN, a novel GCN architecture modeling via bidirectional convolution of topology and features on text-rich networks. Specifically, we first transform the original text-rich network into an augmented bi-typed heterogeneous network, capturing both the global document-level information and the local text-sequence information from texts.We then introduce discriminative convolution mechanisms, which performs convolution on this augmented bi-typed network, realizing the convolutions of topology and features altogether in the same system, and learning different contributions of these two parts (i.e., network part and text part), automatically for the given learning objectives. Extensive experiments on text-rich networks demonstrate that our new architecture outperforms the state-of-the-arts by a breakout improvement. Moreover, this architecture can also be applied to several e-commerce search scenes such as JD searching, and experiments on JD dataset show the superiority of the proposed architecture over the baseline methods. 
    more » « less
  2. Pinpointing the geographic location of an IP address is important for a range of location-aware applications spanning from targeted advertising to fraud prevention. The majority of traditional measurement-based and recent learning-based methods either focus on the efficient employment of topology or utilize data mining to find clues of the target IP in publicly available sources. Motivated by the limitations in existing works, we propose a novel framework named GraphGeo, which provides a complete processing methodology for street-level IP geolocation with the application of graph neural networks. It incorporates IP hosts knowledge and kinds of neighborhood relationships into the graph to infer spatial topology for high-quality geolocation prediction. We explicitly consider and alleviate the negative impact of uncertainty caused by network jitter and congestion, which are pervasive in complicated network environments. Extensive evaluations across three large-scale real-world datasets demonstrate that GraphGeo significantly reduces the geolocation errors compared to the state-of-the-art methods. Moreover, the proposed framework has been deployed on the web platform as an online service for 6 months. 
    more » « less
  3. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks.

    more » « less
  4. null (Ed.)
    Abstract Deep neural networks (DNNs) have achieved state-of-the-art performance in many important domains, including medical diagnosis, security, and autonomous driving. In domains where safety is highly critical, an erroneous decision can result in serious consequences. While a perfect prediction accuracy is not always achievable, recent work on Bayesian deep networks shows that it is possible to know when DNNs are more likely to make mistakes. Knowing what DNNs do not know is desirable to increase the safety of deep learning technology in sensitive applications; Bayesian neural networks attempt to address this challenge. Traditional approaches are computationally intractable and do not scale well to large, complex neural network architectures. In this paper, we develop a theoretical framework to approximate Bayesian inference for DNNs by imposing a Bernoulli distribution on the model weights. This method called Monte Carlo DropConnect (MC-DropConnect) gives us a tool to represent the model uncertainty with little change in the overall model structure or computational cost. We extensively validate the proposed algorithm on multiple network architectures and datasets for classification and semantic segmentation tasks. We also propose new metrics to quantify uncertainty estimates. This enables an objective comparison between MC-DropConnect and prior approaches. Our empirical results demonstrate that the proposed framework yields significant improvement in both prediction accuracy and uncertainty estimation quality compared to the state of the art. 
    more » « less
  5. null (Ed.)
    We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network. 
    more » « less