Abstract Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by the ventilated thermocline. While the ocean’s specific response is dependent on the forcing scheme, our results suggest that partitioning the ocean’s total response to energy perturbations into buoyancy and momentum forcing provides basin-specific insight into key aspects of how the ocean damps ITCZ migrations that previous zonal-mean frameworks omit.
more »
« less
A Pathway for Northern Hemisphere Extratropical Cooling to Elicit a Tropical Response
Abstract Previous studies have found that Northern Hemisphere aerosol‐like cooling induces a La Niña‐like response in the tropical Indo‐Pacific. Here, we explore how a coupled ocean‐atmosphere feedback pathway communicates and sustains this response. We override ocean surface wind stress in a comprehensive climate model to decompose the total ocean‐atmosphere response to forced extratropical cooling into the response of surface buoyancy forcing alone and surface momentum forcing alone. In the subtropics, the buoyancy‐forced response dominates: the positive low cloud feedback amplifies sea surface temperature (SST) anomalies which wind‐driven evaporative cooling communicates to the tropics. In the equatorial Indo‐Pacific, buoyancy‐forced ocean dynamics cool the surface while the Bjerknes feedback creates zonally asymmetric SST patterns. Although subtropical cloud feedbacks are model‐dependent, our results suggest this feedback pathway is robust across a suite of models such that models with a stronger subtropical low cloud response exhibit a stronger La Niña response.
more »
« less
- PAR ID:
- 10393134
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 2
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Low clouds frequent the subtropical northeastern Pacific Ocean (NEP) and interact with the local sea surface temperature (SST) to form positive feedback. Wind fluctuations drive SST variability through wind–evaporation–SST (WES) feedback, and surface evaporation also acts to damp SST. This study investigates the relative contributions of these feedbacks to NEP SST variability. Over the summer NEP, the low cloud–SST feedback is so large that it exceeds the evaporative damping and amplifies summertime SST variations. The WES feedback causes the locally enhanced SST variability to propagate southwestward from the NEP low cloud deck, modulating El Niño–Southern Oscillation (ENSO) occurrence upon reaching the equator. As a result, a second-year El Niño tends to occur when there are significant warm SST anomalies over the subtropical NEP in summer following an antecedent El Niño event and a second-year La Niña tends to occur when there are significant cold SST anomalies over the subtropical NEP in summer following an antecedent La Niña event The mediating role of the NEP low cloud–SST feedback is confirmed in a cloud-locking experiment with the Community Earth System Model, version 1 (CESM1). When the cloud–ocean coupling is disabled, SST variability over the NEP weakens and the modulating effect on ENSO vanishes. The nonlocal effect of the NEP low cloud–SST feedback on ENSO has important implications for climate prediction.more » « less
-
Abstract The complex interaction between the Indian Ocean dipole (IOD) and El Niño–Southern Oscillation (ENSO) is further investigated in this study, with a focus on the impacts of the IOD on ENSO in the subsequent year [ENSO(+1)]. The interaction between the IOD and the concurrent ENSO [ENSO(0)] can be summarized as follows: ENSO(0) can trigger and enhance the IOD, while the IOD can enhance ENSO(0) and accelerate its demise. Regarding the impacts of IOD(0) on the subsequent ENSO(+1), it is revealed that the IOD can lead to anomalous SST cooling patterns over the equatorial Pacific after the winter following the IOD, indicating the formation of a La Niña–like pattern in the subsequent year. While the SST cooling tendency associated with a positive IOD is attributable primarily to net heat flux (thermodynamic processes) from autumn to the ensuing spring, after the ensuing spring the dominant contribution comes from oceanic processes (dynamic processes) instead. From autumn to the ensuing spring, the downward shortwave flux response contributes the most to SST cooling over the central and eastern Pacific, due to the cloud–radiation–SST feedback. From the ensuing winter to the ensuing summer, changes in latent heat flux (LHF) are important for SST cooling, indicating that the release of LHF from the ocean into the atmosphere increases due to strong evaporation and leads to SST cooling through the wind–evaporation–SST feedback. The wind stress response and thermocline shoaling verify that local Bjerknes feedback is crucial for the initiation of La Niña in the later stage.more » « less
-
Abstract Over the subtropical Northeast Pacific (NEP), highly reflective low clouds interact with underlying sea surface temperature (SST) to constitute a local positive feedback. Recent modeling studies showed that, together with wind–evaporation–SST (WES) feedback, the summertime low cloud–SST feedback promotes nonlocal trade wind variations, modulating subsequent evolution of El Niño–Southern Oscillation (ENSO). This study aims to identify drivers of summertime low-cloud variations, using satellite observations and global atmosphere model simulations forced with observed SST. A transbasin teleconnection is identified, where the north tropical Atlantic (NTA) warming induced by the North Atlantic Oscillation (NAO) increases precipitation, exciting warm Rossby waves that extend into the NEP. The resultant enhancement of static stability promotes summertime low cloud–SST variability. By regressing out the effects of the preceding ENSO and NTA SST, atmospheric internal variability over the extratropical North Pacific, including the North Pacific Oscillation (NPO), is found to drive the NEP cooling by latent heat loss and subsequent summer low cloud–SST variability. With the help of the background trade winds and WES feedback, the SST anomalies extend southwestward from the low-cloud region, accompanied by ENSO in the following winter. This suggests the nonlocal effects of low clouds identified by recent studies. Analysis of a 500-yr climate model simulation corroborates the NTA and NPO forcing of NEP low cloud–SST variability and subsequent ENSO.more » « less
-
Abstract Zonal extensions of the Western Pacific subtropical high (WPSH) strongly modulate extreme rainfall activity and tropical cyclone (TC) landfall over the Western North Pacific (WNP) region. These zonal extensions are primarily forced on seasonal timescales by inter‐basin zonal sea surface temperature (SST) gradients. However, despite the presence of large‐scale zonal SST gradients, the WPSH response to SSTs varies from year to year. In this study, we force the atmosphere‐only NCAR Community Earth System Model version 2 simulations with two real‐world SST patterns, both featuring the large‐scale zonal SST gradient characteristic of decaying El Niño‐developing La Niña summers. For each of these patterns, we performed four experimental sets that tested the relative contributions of the tropical Indian Ocean, Pacific, and Atlantic basin SSTs to simulated westward extensions over the WNP during June–August. Our results indicate that the subtle differences between the two SST anomaly patterns belie two different mechanisms forcing the WPSH's westward extensions. In one SST anomaly pattern, extratropical North Pacific SST forcing suppresses the tropical Pacific zonal SST gradient forcing, resulting in tropical Atlantic and Indian Ocean SSTs being the dominant driver. The second SST anomaly pattern drives a similar westward extension as the first pattern, but the underlying SST gradient driving the WPSH points to intra‐basin forcing mechanisms originating in the Pacific. The results of this study have implications for understanding and predicting the impact of the WPSH's zonal variability on tropical cyclones and extreme rainfall over the WNP.more » « less
An official website of the United States government
