skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learned Reconstruction of Protein Folding Trajectories from Noisy Single-Molecule Time Series
Single-molecule Förster resonance energy transfer (smFRET) is an experimental methodology to track the real-time dynamics of molecules using fluorescent probes to follow one or more intramolecular distances. These distances provide a low-dimensional representation of the full atomistic dynamics. Under mild technical conditions, Takens’ Delay Embedding Theorem guarantees that the full three-dimensional atomistic dynamics of a system are diffeomorphic (i.e., related by a smooth and invertible transformation) to a time-delayed embedding of one or more scalar observables. Appealing to these theoretical guarantees, we employ manifold learning, artificial neural networks, and statistical mechanics to learn from molecular simulation training data the a priori unknown transformation between the atomic coordinates and delay-embedded intramolecular distances accessible to smFRET. This learned transformation may then be used to reconstruct atomistic coordinates from smFRET time series data. We term this approach Single-molecule TAkens Reconstruction (STAR). We have previously applied STAR to reconstruct molecular configurations of a C24H50 polymer chain and the mini-protein Chignolin with accuracies better than 0.2 nm from simulated smFRET data under noise free and high time resolution conditions. In the present work, we investigate the role of signal-to-noise ratio, data volume, and time resolution in simulated smFRET data to assess the performance of STAR under conditions more representative of experimental realities. We show that STAR can reconstruct the Chignolin and Villin mini-proteins to accuracies of 0.12 and 0.42 nm, respectively, and place bounds on these conditions for accurate reconstructions. These results demonstrate that it is possible to reconstruct dynamical trajectories of protein folding from time series in noisy, time binned, experimentally measurable observables and lay the foundations for the application of STAR to real experimental data.  more » « less
Award ID(s):
1841810
PAR ID:
10393140
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of chemical theory and computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τ D and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E–τ D diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines. 
    more » « less
  2. Motivation The circadian rhythm drives the oscillatory expression of thousands of genes across all tissues. The recent revolution in high-throughput transcriptomics, coupled with the significant implications of the circadian clock for human health, has sparked an interest in circadian profiling studies to discover genes under circadian control. Result We present TimeCycle: a topology-based rhythm detection method designed to identify cycling transcripts. For a given time-series, the method reconstructs the state space using time-delay embedding, a data transformation technique from dynamical systems theory. In the embedded space, Takens’ theorem proves that the dynamics of a rhythmic signal will exhibit circular patterns. The degree of circularity of the embedding is calculated as a persistence score using persistent homology, an algebraic method for discerning the topological features of data. By comparing the persistence scores to a bootstrapped null distribution, cycling genes are identified. Results in both synthetic and biological data highlight Time-Cycle’s ability to identify cycling genes across a range of sampling schemes, number of replicates, and missing data. Comparison to competing methods highlights their relative strengths, providing guidance as to the optimal choice of cycling detection method. Availability and Implementation A fully documented open-source R package implementing Time-Cycle is available at: https://nesscoder.github.io/TimeCycle/. 
    more » « less
  3. Abstract Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models. 
    more » « less
  4. Abstract Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology. 
    more » « less
  5. null (Ed.)
    Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current ‘state of the art’ from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of ‘soft recommendations’ about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage ‘open science’ practices. 
    more » « less