skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-phase millennial-scale glacier changes in the tropics and North Atlantic regions during the Holocene
Abstract Based on new and published cosmic-ray exposure chronologies, we show that glacier extent in the tropical Andes and the north Atlantic regions (TANAR) varied in-phase on millennial timescales during the Holocene, distinct from other regions. Glaciers experienced an early Holocene maximum extent, followed by a strong mid-Holocene retreat and a re-advance in the late Holocene. We further explore the potential forcing of TANAR glacier variations using transient climate simulations. Since the Atlantic Meridional Overturning Circulation (AMOC) evolution is poorly represented in these transient simulations, we develop a semi-empirical model to estimate the “AMOC-corrected” temperature and precipitation footprint at regional scales. We show that variations in the AMOC strength during the Holocene are consistent with the observed glacier changes. Our findings highlight the need to better constrain past AMOC behavior, as it may be an important driver of TANAR glacier variations during the Holocene, superimposed on other forcing mechanisms.  more » « less
Award ID(s):
1805620
PAR ID:
10393219
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The northern sector of the Greenland Ice Sheet is considered to beparticularly susceptible to ice mass loss arising from increased glacierdischarge in the coming decades. However, the past extent and dynamics ofoutlet glaciers in this region, and hence their vulnerability to climatechange, are poorly documented. In the summer of 2019, the Swedish icebreakerOden entered the previously unchartered waters of Sherard Osborn Fjord, whereRyder Glacier drains approximately 2 % of Greenland's ice sheet into theLincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier andits ice tongue by combining radiocarbon dating with sedimentary faciesanalyses along a 45 km transect of marine sediment cores collected betweenthe modern ice tongue margin and the mouth of the fjord. The resultsillustrate that Ryder Glacier retreated from a grounded position at thefjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by theMiddle Holocene (6.3±0.3 ka cal BP), likely becoming completelyland-based. A re-advance of Ryder Glacier occurred in the Late Holocene,becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue,similar in extent to its current position was established in the LateHolocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) andextended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited duringthe entire retreat and regrowth phases, suggesting the persistence of an icetongue that only collapsed when the glacier retreated behind a prominenttopographic high at the landward end of the fjord. Sherard Osborn Fjordnarrows inland, is constrained by steep-sided cliffs, contains a number ofbathymetric pinning points that also shield the modern ice tongue andgrounding zone from warm Atlantic waters, and has a shallowing inlandsub-ice topography. These features are conducive to glacier stability andcan explain the persistence of Ryder's ice tongue while the glacier remainedmarine-based. However, the physiography of the fjord did not halt thedramatic retreat of Ryder Glacier under the relatively mild changes inclimate forcing during the Holocene. Presently, Ryder Glacier is groundedmore than 40 km seaward of its inferred position during the Middle Holocene,highlighting the potential for substantial retreat in response to ongoingclimate change. 
    more » « less
  2. An idealized ice–ocean model is used to study the time-dependent Atlantic meridional overturning circulation (AMOC) responses to a sudden uniform surface warming and/or an amplified evaporation minus precipitation (E−P) forcing. At transient time scales, the AMOC initially weakens in response to both types of forcing as a result of buoyancy gain in the North Atlantic, but the amplified E−P response is an order of magnitude smaller when its amplitude is chosen based on the Clausius–Clapeyron scaling, consistent with its weaker initial buoyancy flux anomaly. At equilibrium, the AMOC here weakens under warming, contrasting with previous idealized modeling studies. The difference is attributed to a larger role of North Atlantic warming (acting to weaken the AMOC) and a weaker role of reduced brine rejection around Antarctica (acting to deepen and strengthen the AMOC). When E−P forcing is amplified, the AMOC strengthens, qualitatively consistent with a previously proposed passive response that predicts an enhancement of the existing salinity pattern in equilibrium, although the amplification of the salinity contrast is significantly damped by a negative salt advection feedback. For a small-amplitude change in both temperature and E−P, the AMOC response can be approximated by the linear combination of the individual responses. However, large-amplitude warming and amplified E−P forcing can lead to a positive salt advection feedback that collapses the AMOC in our simulations. To understand why the sign of the salt advection feedback varies across different simulations, its multifaceted roles are further investigated using box model theories, and their relevance to comprehensive models is discussed. 
    more » « less
  3. Abstract Variations in the Atlantic Meridional Overturning Circulation (AMOC) redistribute heat and nutrients, causing pronounced anomalies of temperature and nutrient concentrations in the subsurface ocean. However, exactly how millennial‐scale deglacial AMOC variability influenced the subsurface is debated, and the role of other deglacial forcings of subsurface temperature change is unclear. Here, we present a new deglacial temperature reconstruction, which, with published records, helps assess competing hypotheses for deglacial warming in the upper tropical North Atlantic. Our record provides new evidence of regional subsurface warming in the western tropical North Atlantic within the core of modern Antarctic Intermediate Water (AAIW) during Heinrich Stadial 1 (HS1), an early deglacial interval of iceberg discharge into the North Atlantic. Our results are consistent with model simulations that suggest subsurface heat accumulates in the northern high‐latitude convection regions and along the upper AMOC return path when the AMOC weakens, and with warming due to rising greenhouse gases. Warming of AAIW may have also contributed to warming in the tropics at modern AAIW depths during late HS1. Nutrient andreconstructions from the same site suggest a link between AMOC intensity and the northward extent of AAIW in the northern tropics across the deglaciation and on millennial time scales. However, the timing of the initial deglacial increase in AAIW to the northern tropics is ambiguous. Deglacial trends and variability ofin the upper North Atlantic have likely biased temperature reconstructions based on the elemental composition of calcitic benthic foraminifera. 
    more » « less
  4. Paleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-only simulations with surface forcing fields specified from the simulation results of three coupled climate models that span much of the range of glacial AMOC depth changes in phase 3 of the Paleoclimate Model Intercomparison Project (PMIP3). We find that the MITgcm simulations successfully reproduce the changes in AMOC depth between glacial and modern conditions simulated in these three PMIP3 models. By varying the restoring time scale in the surface forcing, we show that the AMOC depth is more strongly constrained by the surface density field than the surface buoyancy flux field. Based on these results, we propose a mechanism by which the surface density fields in the high latitudes of both hemispheres are connected to the AMOC depth. We illustrate the mechanism using MITgcm simulations with idealized surface forcing perturbations as well as an idealized conceptual geometric model. These results suggest that the AMOC depth is largely determined by the surface density fields in both the North Atlantic and the Southern Ocean. 
    more » « less
  5. Abstract Winter surface air temperature (Tas) over the Barents–Kara Seas (BKS) and other Arctic regions has experienced rapid warming since the late 1990s that has been linked to the concurring cooling over Eurasia, and these multidecadal trends are attributed partly to internal variability. However, how such variability is generated is unclear. Through analyses of observations and model simulations, we show that sea ice–air two-way interactions amplify multidecadal variability in sea-ice cover, sea surface temperatures (SST) and Tas from the North Atlantic to BKS, and the Atlantic Meridional Overturning Circulation (AMOC) mainly through variations in surface fluxes. When sea ice is fixed in flux calculations, multidecadal variations are reduced substantially (by 20–50%) not only in Arctic Tas, but also in North Atlantic SST and AMOC. The results suggest that sea ice–air interactions are crucial for multidecadal climate variability in both the Arctic and North Atlantic, similar to air-sea interactions for tropical climate. 
    more » « less