skip to main content


Title: Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments
Abstract

Human‐induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg ClL−1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among‐site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.

 
more » « less
NSF-PAR ID:
10393297
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
8
Issue:
1
ISSN:
2378-2242
Format(s):
Medium: X Size: p. 19-29
Size(s):
["p. 19-29"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mountain glaciers are retreating rapidly due to climate change, leading to the formation of downstream lakes. However, little is known about the physical and biogeochemical conditions in these lakes across a range of glacial influence. We surveyed alpine lakes fed by both glacial and snowpack meltwaters and those fed by snowpack alone to compare nutrient concentrations, stoichiometry, water clarity, chlorophyll, and zooplankton communities. Total phosphorus (TP) and soluble reactive phosphorus were two times higher in glacial lakes than in non‐glacial lakes, while nitrate concentrations were three times higher. However, organic carbon concentrations in glacial lakes were two times lower than in non‐glacial lakes. The carbon‐to‐phosphorus ratio and the nitrogen‐to‐phosphorus ratio of lake seston increased with water clarity in glacial lakes, suggesting that turbidity from glacial flour increases light limitation and increases stoichiometric food quality for zooplankton in newly formed lakes. However, chlorophyllaconcentrations did not differ between lake types. Through structural equation modeling, we found that glaciers exhibit a bidirectional association with nitrate and TP concentrations, perhaps mediated through landscape vegetation and lake clarity. Zooplankton communities in high‐turbidity glacial lakes were largely composed of cyclopoid copepods and rotifers (i.e., non‐filter feeders), while non‐glacial lakes tended to be dominated by calanoid copepods and cladocerans (i.e., filter feeders). Our results show that glacier‐influenced lakes have biogeochemical and ecological characteristics distinct from snow‐fed mountain lakes. Sustained studies are needed to assess the dynamics of these unique features as the influence of the alpine cryosphere fades under ongoing climate change.

     
    more » « less
  2. Abstract

    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cltolerance is present among populations? (2) What factors predict intraspecific variation in Cltolerance? (3) Must we account for intraspecific variation to accurately predict community Cltolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC50s from published laboratory studies. We found high variation in LC50s for Cltolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species‐LC50was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cltolerance.

     
    more » « less
  3. The concentrations of conservative solutes in seepage lakes are determined by the relative inputs of precipitation vs. groundwater. In areas of road salt application, seepage lakes may be at high risk of salinization depending on groundwater flow. Here, we revisit a 1992 analysis on the salinization of Sparkling Lake, a deep seepage lake in Northern Wisconsin. The original analysis predicted a rapid increase in chloride concentrations before reaching a steady steady of 8 mg L−1by 2020. Forty years of monitoring Sparkling Lake show that rather than reaching a dynamic equilibrium, chloride concentrations have steadily increased. We update the original box model approach by adding a soil reservoir component that shows the slow steady rise in chloride is the result of terrestrial retention. For freshwater rivers and lakes, chloride retention on the landscape will both delay chloride impairment and prolong recovery and must be considered when modeling future chloride contamination risk.

     
    more » « less
  4. <sc>A</sc>bstract

    Freshwater systems are critical to life on earth, yet they are threatened by the increasing rate of synthetic chemical pollution. Current predictions of the effects of synthetic chemicals on freshwater ecosystems are hampered by the sheer number of chemical contaminants entering aquatic systems, the diversity of organisms inhabiting these systems, the myriad possible direct and indirect effects resulting from these combinations, and uncertainties concerning how contaminants might alter ecosystem metabolism via changes in biodiversity. To address these knowledge gaps, we conducted a mesocosm experiment that elucidated the responses of ponds composed of phytoplankton and zooplankton to standardized concentrations of 12 pesticides, nested within four pesticide classes, and two pesticide types. We show that the effects of the pesticides on algae were consistent within herbicides and insecticides and that responses of over 70 phytoplankton species and genera were consistent within broad taxonomic groups. Insecticides generated top‐down effects on phytoplankton community composition and abundance, which were associated with persistent increases in ecosystem respiration. Insecticides had direct toxic effects on cladocerans, which led to competitive release of copepods. These changes in the zooplankton community led to a decrease in green algae and a modest increase in diatoms. Herbicides did not change phytoplankton composition but reduced total phytoplankton abundance. This reduction in phytoplankton led to short‐term decreases in ecosystem respiration. Given that ponds release atmospheric carbon and that worldwide pesticide pollution continues to increase exponentially, scientists and policy makers should pay more attention to the ways pesticides alter the carbon cycle in ponds via changes in communities, as demonstrated by our results. Our results show that these predictions can be simplified by grouping pesticides into types and species into functional groups. Adopting this approach provides an opportunity to improve the efficiency of risk assessment and mitigation responses to global change.

     
    more » « less
  5. Abstract

    Lakes process both terrestrial and aquatic organic matter, and the relative contribution from each source is often measured via ecosystem metabolism and terrestrial resource use in the food web (i.e., consumer allochthony). Yet, ecosystem metabolism and consumer allochthony are rarely considered together, despite possible interactions and potential for them to respond to the same lake characteristics. In this study, we compiled global datasets of lake gross primary production (GPP), ecosystem respiration (ER), and zooplankton allochthony to compare the strength and shape of relationships with physicochemical characteristics across a broad set of lakes. GPP was positively related to total phosphorus (TP) in lakes with intermediate TP concentrations (11–75 μg L−1) and was highest in lakes with intermediate dissolved organic carbon (DOC) concentrations. While ER and GPP were strongly positively correlated, decoupling occurred at high DOC concentrations. Lastly, allochthony had a unimodal relationship with TP and related variably to DOC. By integrating metabolism and allochthony, we identified similar change points in GPP and zooplankton allochthony at intermediate DOC (4.5–10 mg L−1) and TP (8–20 μg L−1) concentrations, indicating that allochthony and GPP may be coupled and inversely related. The ratio of DOC:nutrients also helped to identify conditions where lake organic matter processing responded more to autochthonous or allochthonous organic matter sources. As lakes globally face eutrophication and browning, predicting how lake organic matter processing will respond requires an updated paradigm that incorporates nonlinear dynamics and interactions.

     
    more » « less