skip to main content


Title: Prioritizing predictive biomarkers for gene essentiality in cancer cells with mRNA expression data and DNA copy number profile
Abstract Motivation

Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells is informative for both cancer research and the development of targeted drugs. The established experimental and computational methods are labor-intensive. To make algorithms feasible in real clinical settings, methods that can predict driver genes using less experimental data are urgently needed.

Results

We designed an effective feature selection method and used Support Vector Machines (SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality Prediction Challenge. We also found a set of genes whose essentiality could be predicted much more accurately than others, which we called Accurately Predicted (AP) genes. Our method can serve as a new way of assessing the essentiality of genes in cancer cells.

Availability and implementation

The raw data that support the findings of this study are available at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10393391
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
34
Issue:
23
ISSN:
1367-4803
Page Range / eLocation ID:
p. 3975-3982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

    Results

    GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

    Availability and implementation

    All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly non-linear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks.

    Results

    We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting gene ontology terms of varying type and specificity.

    Availability and implementation

    deepNF is freely available at: https://github.com/VGligorijevic/deepNF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Double minute (DM) chromosomes are acentric extrachromosomal DNA artifacts that are frequently observed in the cells of numerous cancers. They are highly amplified and contain oncogenes and drug-resistance genes, making their presence a challenge for effective cancer treatment. Algorithmic discovery of DM can potentially improve bench-derived therapies for cancer treatment. A hindrance to this task is that DMs evolve, yielding circular chromatin that shares segments from progenitor DMs. This creates DMs with overlapping amplicon coordinates. Existing DM discovery algorithms use whole genome shotgun sequencing (WGS) in isolation, which can potentially incorrectly classify DMs that share overlapping coordinates.

    Results

    In this study, we describe an algorithm called ‘HolistIC’ that can predict DMs in tumor genomes by integrating WGS and Hi–C sequencing data. The consolidation of these sources of information resolves ambiguity in DM amplicon prediction that exists in DM prediction with WGS data used in isolation. We implemented and tested our algorithm on the tandem Hi–C and WGS datasets of three cancer datasets and a simulated dataset. Results on the cancer datasets demonstrated HolistIC’s ability to predict DMs from Hi–C and WGS data in tandem. The results on the simulated data showed the HolistIC can accurately distinguish DMs that have overlapping amplicon coordinates, an advance over methods that predict extrachromosomal amplification using WGS data in isolation.

    Availability and implementation

    Our software, named ‘HolistIC’, is available at http://www.github.com/mhayes20/HolistIC.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Reversible protein phosphorylation is an essential post-translational modification regulating protein functions and signaling pathways in many cellular processes. Aberrant activation of signaling pathways often contributes to cancer development and progression. The mass spectrometry-based phosphoproteomics technique is a powerful tool to investigate the site-level phosphorylation of the proteome in a global fashion, paving the way for understanding the regulatory mechanisms underlying cancers. However, this approach is time-consuming and requires expensive instruments, specialized expertise and a large amount of starting material. An alternative in silico approach is predicting the phosphoproteomic profiles of cancer patients from the available proteomic, transcriptomic and genomic data.

    Results

    Here, we present a winning algorithm in the 2017 NCI-CPTAC DREAM Proteogenomics Challenge for predicting phosphorylation levels of the proteome across cancer patients. We integrate four components into our algorithm, including (i) baseline correlations between protein and phosphoprotein abundances, (ii) universal protein–protein interactions, (iii) shareable regulatory information across cancer tissues and (iv) associations among multi-phosphorylation sites of the same protein. When tested on a large held-out testing dataset of 108 breast and 62 ovarian cancer samples, our method ranked first in both cancer tissues, demonstrating its robustness and generalization ability.

    Availability and implementation

    Our code and reproducible results are freely available on GitHub: https://github.com/GuanLab/phosphoproteome_prediction.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Higher-order interaction patterns among proteins have the potential to reveal mechanisms behind molecular processes and diseases. While clustering methods are used to identify functional groups within molecular interaction networks, these methods largely focus on edge density and do not explicitly take into consideration higher-order interactions. Disease genes in these networks have been shown to exhibit rich higher-order structure in their vicinity, and considering these higher-order interaction patterns in network clustering have the potential to reveal new disease-associated modules.

    Results

    We propose a higher-order community detection method which identifies community structure in networks with respect to specific higher-order connectivity patterns beyond edges. Higher-order community detection on four different protein–protein interaction networks identifies biologically significant modules and disease modules that conventional edge-based clustering methods fail to discover. Higher-order clusters also identify disease modules from genome-wide association study data, including new modules that were not discovered by top-performing approaches in a Disease Module DREAM Challenge. Our approach provides a more comprehensive view of community structure that enables us to predict new disease–gene associations.

    Availability and implementation

    https://github.com/Reed-CompBio/graphlet-clustering.

     
    more » « less