skip to main content


Title: deepNF: deep network fusion for protein function prediction
Abstract Motivation

The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly non-linear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks.

Results

We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting gene ontology terms of varying type and specificity.

Availability and implementation

deepNF is freely available at: https://github.com/VGligorijevic/deepNF.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10393399
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
34
Issue:
22
ISSN:
1367-4803
Page Range / eLocation ID:
p. 3873-3881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

    Results

    GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

    Availability and implementation

    All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks. Results In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance. Availability and implementation The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract Motivation

    Due to the nature of experimental annotation, most protein function prediction methods operate at the protein-level, where functions are assigned to full-length proteins based on overall similarities. However, most proteins function by interacting with other proteins or molecules, and many functional associations should be limited to specific regions rather than the entire protein length. Most domain-centric function prediction methods depend on accurate domain family assignments to infer relationships between domains and functions, with regions that are unassigned to a known domain-family left out of functional evaluation. Given the abundance of residue-level annotations currently available, we present a function prediction methodology that automatically infers function labels of specific protein regions using protein-level annotations and multiple types of region-specific features.

    Results

    We apply this method to local features obtained from InterPro, UniProtKB and amino acid sequences and show that this method improves both the accuracy and region-specificity of protein function transfer and prediction. We compare region-level predictive performance of our method against that of a whole-protein baseline method using proteins with structurally verified binding sites and also compare protein-level temporal holdout predictive performances to expand the variety and specificity of GO terms we could evaluate. Our results can also serve as a starting point to categorize GO terms into region-specific and whole-protein terms and select prediction methods for different classes of GO terms.

    Availability and implementation

    The code and features are freely available at: https://github.com/ek1203/rsfp.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Proteases are enzymes that cleave target substrate proteins by catalyzing the hydrolysis of peptide bonds between specific amino acids. While the functional proteolysis regulated by proteases plays a central role in the ‘life and death’ cellular processes, many of the corresponding substrates and their cleavage sites were not found yet. Availability of accurate predictors of the substrates and cleavage sites would facilitate understanding of proteases’ functions and physiological roles. Deep learning is a promising approach for the development of accurate predictors of substrate cleavage events.

    Results

    We propose DeepCleave, the first deep learning-based predictor of protease-specific substrates and cleavage sites. DeepCleave uses protein substrate sequence data as input and employs convolutional neural networks with transfer learning to train accurate predictive models. High predictive performance of our models stems from the use of high-quality cleavage site features extracted from the substrate sequences through the deep learning process, and the application of transfer learning, multiple kernels and attention layer in the design of the deep network. Empirical tests against several related state-of-the-art methods demonstrate that DeepCleave outperforms these methods in predicting caspase and matrix metalloprotease substrate-cleavage sites.

    Availability and implementation

    The DeepCleave webserver and source code are freely available at http://deepcleave.erc.monash.edu/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Sequence-based protein–protein interaction (PPI) prediction represents a fundamental computational biology problem. To address this problem, extensive research efforts have been made to extract predefined features from the sequences. Based on these features, statistical algorithms are learned to classify the PPIs. However, such explicit features are usually costly to extract, and typically have limited coverage on the PPI information.

    Results

    We present an end-to-end framework, PIPR (Protein–Protein Interaction Prediction Based on Siamese Residual RCNN), for PPI predictions using only the protein sequences. PIPR incorporates a deep residual recurrent convolutional neural network in the Siamese architecture, which leverages both robust local features and contextualized information, which are significant for capturing the mutual influence of proteins sequences. PIPR relieves the data pre-processing efforts that are required by other systems, and generalizes well to different application scenarios. Experimental evaluations show that PIPR outperforms various state-of-the-art systems on the binary PPI prediction problem. Moreover, it shows a promising performance on more challenging problems of interaction type prediction and binding affinity estimation, where existing approaches fall short.

    Availability and implementation

    The implementation is available at https://github.com/muhaochen/seq_ppi.git.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less