skip to main content


Title: Genome Context Viewer: visual exploration of multiple annotated genomes using microsynteny
Abstract Summary

The Genome Context Viewer is a visual data-mining tool that allows users to search across multiple providers of genome data for regions with similarly annotated content that may be aligned and visualized at the level of their shared functional elements. By handling ordered sequences of gene family memberships as a unit of search and comparison, the user interface enables quick and intuitive assessment of the degree of gene content divergence and the presence of various types of structural events within syntenic contexts. Insights into functionally significant differences seen at this level of abstraction can then serve to direct the user to more detailed explorations of the underlying data in other interconnected, provider-specific tools.

Availability and implementation

GCV is provided under the GNU General Public License version 3 (GPL-3.0). Source code is available at https://github.com/legumeinfo/lis_context_viewer.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10393406
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
34
Issue:
9
ISSN:
1367-4803
Page Range / eLocation ID:
p. 1562-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Three-dimensional (3D) genome organization plays important functional roles in cells. User-friendly tools for reconstructing 3D genome models from chromosomal conformation capturing data and analyzing them are needed for the study of 3D genome organization.

    Results

    We built a comprehensive graphical tool (GenomeFlow) to facilitate the entire process of modeling and analysis of 3D genome organization. This process includes the mapping of Hi-C data to one-dimensional (1D) reference genomes, the generation, normalization and visualization of two-dimensional (2D) chromosomal contact maps, the reconstruction and the visualization of the 3D models of chromosome and genome, the analysis of 3D models and the integration of these models with functional genomics data. This graphical tool is the first of its kind in reconstructing, storing, analyzing and annotating 3D genome models. It can reconstruct 3D genome models from Hi-C data and visualize them in real-time. This tool also allows users to overlay gene annotation, gene expression data and genome methylation data on top of 3D genome models.

    Availability and implementation

    The source code and user manual: https://github.com/jianlin-cheng/GenomeFlow.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    Alternative splicing generates multiple isoforms from a single gene, greatly increasing the functional diversity of a genome. Although gene functions have been well studied, little is known about the specific functions of isoforms, making accurate prediction of isoform functions highly desirable. However, the existing approaches to predicting isoform functions are far from satisfactory due to at least two reasons: (i) unlike genes, isoform-level functional annotations are scarce. (ii) The information of isoform functions is concealed in various types of data including isoform sequences, co-expression relationship among isoforms, etc.

    Results

    In this study, we present a novel approach, DIFFUSE (Deep learning-based prediction of IsoForm FUnctions from Sequences and Expression), to predict isoform functions. To integrate various types of data, our approach adopts a hybrid framework by first using a deep neural network (DNN) to predict the functions of isoforms from their genomic sequences and then refining the prediction using a conditional random field (CRF) based on co-expression relationship. To overcome the lack of isoform-level ground truth labels, we further propose an iterative semi-supervised learning algorithm to train both the DNN and CRF together. Our extensive computational experiments demonstrate that DIFFUSE could effectively predict the functions of isoforms and genes. It achieves an average area under the receiver operating characteristics curve of 0.840 and area under the precision–recall curve of 0.581 over 4184 GO functional categories, which are significantly higher than the state-of-the-art methods. We further validate the prediction results by analyzing the correlation between functional similarity, sequence similarity, expression similarity and structural similarity, as well as the consistency between the predicted functions and some well-studied functional features of isoform sequences.

    Availability and implementation

    https://github.com/haochenucr/DIFFUSE.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Accurate estimation of transcript isoform abundance is critical for downstream transcriptome analyses and can lead to precise molecular mechanisms for understanding complex human diseases, like cancer. Simplex mRNA Sequencing (RNA-Seq) based isoform quantification approaches are facing the challenges of inherent sampling bias and unidentifiable read origins. A large-scale experiment shows that the consistency between RNA-Seq and other mRNA quantification platforms is relatively low at the isoform level compared to the gene level. In this project, we developed a platform-integrated model for transcript quantification (IntMTQ) to improve the performance of RNA-Seq on isoform expression estimation. IntMTQ, which benefits from the mRNA expressions reported by the other platforms, provides more precise RNA-Seq-based isoform quantification and leads to more accurate molecular signatures for disease phenotype prediction.

    Results

    In the experiments to assess the quality of isoform expression estimated by IntMTQ, we designed three tasks for clustering and classification of 46 cancer cell lines with four different mRNA quantification platforms, including newly developed NanoString’s nCounter technology. The results demonstrate that the isoform expressions learned by IntMTQ consistently provide more and better molecular features for downstream analyses compared with five baseline algorithms which consider RNA-Seq data only. An independent RT-qPCR experiment on seven genes in twelve cancer cell lines showed that the IntMTQ improved overall transcript quantification. The platform-integrated algorithms could be applied to large-scale cancer studies, such as The Cancer Genome Atlas (TCGA), with both RNA-Seq and array-based platforms available.

    Availability and implementation

    Source code is available at: https://github.com/CompbioLabUcf/IntMTQ.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Summary

    The EPIC-CoGe browser is a web-based genome visualization utility that integrates the GMOD JBrowse genome browser with the extensive CoGe genome database (currently containing over 30 000 genomes). In addition, the EPIC-CoGe browser boasts many additional features over basic JBrowse, including enhanced search capability and on-the-fly analyses for comparisons and analyses between all types of functional and diversity genomics data. There is no installation required and data (genome, annotation, functional genomic and diversity data) can be loaded by following a simple point and click wizard, or using a REST API, making the browser widely accessible and easy to use by researchers of all computational skill levels. In addition, EPIC-CoGe and data tracks are easily embedded in other websites and JBrowse instances.

    Availability and implementation

    EPIC-CoGe Browser is freely available for use online through CoGe (https://genomevolution.org). Source code (MIT open source) is available: https://github.com/LyonsLab/coge.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    The advancement of high-throughput technology characterizes a wide variety of epigenetic modifications and noncoding RNAs across the genome involved in disease pathogenesis via regulating gene expression. The high dimensionality of both epigenetic/noncoding RNA and gene expression data make it challenging to identify the important regulators of genes. Conducting univariate test for each possible regulator–gene pair is subject to serious multiple comparison burden, and direct application of regularization methods to select regulator–gene pairs is computationally infeasible. Applying fast screening to reduce dimension first before regularization is more efficient and stable than applying regularization methods alone.

    Results

    We propose a novel screening method based on robust partial correlation to detect epigenetic and noncoding RNA regulators of gene expression over the whole genome, a problem that includes both high-dimensional predictors and high-dimensional responses. Compared to existing screening methods, our method is conceptually innovative that it reduces the dimension of both predictor and response, and screens at both node (regulators or genes) and edge (regulator–gene pairs) levels. We develop data-driven procedures to determine the conditional sets and the optimal screening threshold, and implement a fast iterative algorithm. Simulations and applications to long noncoding RNA and microRNA regulation in Kidney cancer and DNA methylation regulation in Glioblastoma Multiforme illustrate the validity and advantage of our method.

    Availability and implementation

    The R package, related source codes and real datasets used in this article are provided at https://github.com/kehongjie/rPCor.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less