skip to main content


Title: What shapes implementation of a school-based makerspace? Teachers as multilevel actors in STEM reforms
Abstract Background

We investigate the factors that shape teachers’ implementation of a school STEM reform—the creation of a high-school makerspace. Educational reformers have increasing interest in making and makerspaces in schools. Prior research shows how factors shape reform at the classroom, school (organizational), and institutional levels, as well as across levels. However, most research on teachers tends to focus on classroom-level effects, which may not capture the full complexity of how they navigate multilevel reforms. We consider teachers’ decision-making from an ecological perspective to investigate what shapes their implementation efforts, using observational and interview data collected over 2 years in a large comprehensive high school.

Results

We find teachers’ efforts are shaped by four “distances”—or spaces teachers traversed, physically and conceptually—related to skillsets and distributed expertise, physical space, disciplinary learning, and structural factors. The distances operate as a constellation of factors—independently identifiable, co-operatively manifesting—to shape implementation. We position teacher deliberations and decision-making as portals into the forms of organizational and institutional supports offered in multilevel reforms.

Conclusions

The paper contributes insights into makerspace implementation in schools, adding to the emerging literature on how making can transform STEM learning experiences for students. We conclude that teachers’ decision-making around multilevel implementations can inform our understanding of how makerspaces are implemented and their impact on students’ experiences, as well as how seeing teachers as multilevel actors can offer new insights into reform dynamics writ large. We offer implications for makerspaces in schools, as well as methodological and theoretical considerations for how organizations and institutions can better support teachers as agents of STEM reform.

 
more » « less
NSF-PAR ID:
10393609
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
10
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  
    more » « less
  2. Autumn, a young white woman growing up in multi-generational poverty in an economically challenged midwestern city, has authored a STEM-empowered life against the dominant sociohistorical narrative in American society. She has attended public schools that served significant populations living in high poverty – overcrowded classrooms, high teacher turnovers, out-of-field teaching, and limited STEM resources. Yet, she has authored herself into STEM despite these mitigating circumstances. Autumn is currently a high school senior with aspirations to become an engineer or a hairdresser working in an eco-salon. She spends part of her time after school in a makerspace housed in her local community center, building things to solve other people’s problems. She reminds us that her out-of-school efforts to participate in STEM exist worlds away from schooling. However, she takes the optimistic view that if she could tell teachers about her out-of-school STEM experiences, her teachers might be better able to help her and her peers serve the interests and needs of her community, as well as see Autumn’s potential in STEM. Now a rising 12th grader, we have followed Autumn since 5th grade through school and afterschool. As she grew older, she became more interested in helping us to document and tell her story. She is an author on this paper. Also during this time, Autumn has shifted from wanting to be a hair designer (5th grade) to wanting to own a “green” (environmentally friendly) hair salon (8th grade), to considering engineering as a possible career (10th grade). Autumn has struggled with being labeled “a girl in the background” and someone whom her mother described in 7th grade as “if she would just get Ds, I would be happy.” However, over the past 6 years, Autumn has engaged in an ever-increasing range of STEM-rich actions and relationships, including building a Little Free STEM Library, leading workshops on energy efficiency, making educational movies for her community to teach about green energy, and writing for her afterschool STEM club blog. We are interested in Autumn’s engagement with others in these activities over time and space, and how they shape her own and her community’s engagement in STEM. The overarching question that guides this manuscript is: What are the micro-dynamics that produce and challenge inequalities in Fall’s becoming in STEM, as a white girl, growing up in multi-generational poverty in a Midwestern city. Using Holland & Lave’s (2009) two forms of history –“history in person” and “history in institutionalized struggles”–we examined several pivotal events, and the micro-dynamics at play, identified by Autumn with respect to becoming in STEM. We sought to make sense of the ways in which Autumn’s STEM experiences were carried out in local practice but also enacted against the broader background of cultural/historical narratives. In this process we traced Autumn’s core commitments-in-practice in STEM & Community. We also examined how these core commitments-in-practice led, at times, to conflict and new forms of “contentious local practice” (LCP) as these commitments-in-practice pushed back against particular local, historical and sociocultural contexts. 
    more » « less
  3. Autumn, a young white woman growing up in multi-generational poverty in an economically challenged midwestern city, has authored a STEM-empowered life against the dominant sociohistorical narrative in American society. She has attended public schools that served significant populations living in high poverty – overcrowded classrooms, high teacher turnovers, out-of-field teaching, and limited STEM resources. Yet, she has authored herself into STEM despite these mitigating circumstances. Autumn is currently a high school senior with aspirations to become an engineer or a hairdresser working in an eco-salon. She spends part of her time after school in a makerspace housed in her local community center, building things to solve other people’s problems. She reminds us that her out-of-school efforts to participate in STEM exist worlds away from schooling. However, she takes the optimistic view that if she could tell teachers about her out-of-school STEM experiences, her teachers might be better able to help her and her peers serve the interests and needs of her community, as well as see Autumn’s potential in STEM. Now a rising 12th grader, we have followed Autumn since 5th grade through school and afterschool. As she grew older, she became more interested in helping us to document and tell her story. She is an author on this paper. Also during this time, Autumn has shifted from wanting to be a hair designer (5th grade) to wanting to own a “green” (environmentally friendly) hair salon (8th grade), to considering engineering as a possible career (10th grade). Autumn has struggled with being labeled “a girl in the background” and someone whom her mother described in 7th grade as “if she would just get Ds, I would be happy.” However, over the past 6 years, Autumn has engaged in an ever-increasing range of STEM-rich actions and relationships, including building a Little Free STEM Library, leading workshops on energy efficiency, making educational movies for her community to teach about green energy, and writing for her afterschool STEM club blog. We are interested in Autumn’s engagement with others in these activities over time and space, and how they shape her own and her community’s engagement in STEM. The overarching question that guides this manuscript is: What are the interactional forces that operating across space and time that influence Autumn’s becoming in STEM, as a white girl, growing up in multi-generational poverty in a Midwestern city. Using Holland & Lave’s (2009) two forms of history –“history in person” and “history in institutionalized struggles”–we examined several pivotal events, and the micro-dynamics at play, identified by Autumn with respect to becoming in STEM. We sought to make sense of the ways in which Autumn’s STEM experiences were carried out in local practice but also enacted against the broader background of cultural/historical narratives. In this process we traced Autumn’s core commitments-in-practice in STEM & Community. We also examined how these core commitments-in-practice led, at times, to conflict and new forms of “contentious local practice” (LCP) as these commitments-in-practice pushed back against particular local, historical and sociocultural contexts. 
    more » « less
  4. Abstract Background

    Much of researchers’ efforts to foster wider implementation of educational innovations in STEM has focused on understanding and facilitating the implementation efforts of faculty. However, student engagement in blended learning and other innovations relies heavily on students’ self-directed learning behaviors, implying that students are likely key actors in the implementation process. This paper explores the ways in which engineering students at multiple institutions experience the self-directed selection and implementation of blended learning resources in the context of their own studies. To accomplish this, it adopts a research perspective informed by Actor-Network Theory, allowing students themselves to be perceived as individual actors and implementors rather than a population that is implemented upon.

    Results

    A thematic analysis was conducted in two parts. First, analysis identified sets of themes unique to the student experience at four participant institutions. Then, a second round of analysis identified and explored a subset of key actors represented in students’ reported experiences across all institutions. The findings show clear similarities and differences in students’ experiences of blended learning across the four institutions, with many themes echoing or building upon the results of prior research. Distinct institutional traits, the actions of the instructors, the components of the blended learning environment, and the unique needs and preferences of the students themselves all helped to shape students’ self-directed learning experiences. Students’ engagement decisions and subsequent implementations of blended learning resulted in personally appropriate, perhaps even idiosyncratic, forms of engagement with their innovative learning opportunities.

    Conclusion

    The institutional implementation of blended learning, and perhaps other educational innovations, relies in part on the self-directed decision-making of individual students. This suggests that instructors too hold an additional responsibility: to act as facilitators of their students’ implementation processes and as catalysts for growth and change in students’ learning behaviors. Developing a greater understanding of students’ implementation behaviors could inform the future implementation efforts of faculty and better empower students to succeed in the innovative classroom.

     
    more » « less
  5. Abstract Background

    Active learning used in science, technology, engineering, and mathematics (STEM) courses has been shown to improve student outcomes. Nevertheless, traditional lecture-orientated approaches endure in these courses. The implementation of teaching practices is a result of many interrelated factors including disciplinary norms, classroom context, and beliefs about learning. Although factors influencing uptake of active learning are known, no study to date has had the statistical power to empirically test the relative association of these factors with active learning when considered collectively. Prior studies have been limited to a single or small number of evaluated factors; in addition, such studies did not capture the nested nature of institutional contexts. We present the results of a multi-institution, large-scale (N = 2382 instructors;N = 1405 departments;N = 749 institutions) survey-based study in the United States to evaluate 17 malleable factors (i.e., influenceable and changeable) that are associated with the amount of time an instructor spends lecturing, a proxy for implementation of active learning strategies, in introductory postsecondary chemistry, mathematics, and physics courses.

    Results

    Regression analyses, using multilevel modeling to account for the nested nature of the data, indicate several evaluated contextual factors, personal factors, and teacher thinking factors were significantly associated with percent of class time lecturing when controlling for other factors used in this study. Quantitative results corroborate prior research in indicating that large class sizes are associated with increased percent time lecturing. Other contextual factors (e.g., classroom setup for small group work) and personal contexts (e.g., participation in scholarship of teaching and learning activities) are associated with a decrease in percent time lecturing.

    Conclusions

    Given the malleable nature of the factors, we offer tangible implications for instructors and administrators to influence the adoption of more active learning strategies in introductory STEM courses.

     
    more » « less