skip to main content


Title: The young HD 73583 (TOI-560) planetary system: two 10-M⊕ mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf
ABSTRACT

We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (∼500 Myr) active star with a rotational period of 12.08 ± 0.11  d, and a mass and radius of 0.73 ± 0.02 M⊙ and 0.65 ± 0.02 R⊙, respectively. HD 73583 b (Pb = $6.3980420 _{ - 0.0000062 } ^ { + 0.0000067 }$ d) has a mass and radius of $10.2 _{ - 3.1 } ^ { + 3.4 }$ M⊕ and 2.79 ± 0.10 R⊕, respectively, which gives a density of $2.58 _{ - 0.81 } ^ { + 0.95 }$ ${\rm g\, cm^{-3}}$. HD 73583 c (Pc = $18.87974 _{ - 0.00074 } ^ { + 0.00086 }$ d) has a mass and radius of $9.7 _{ - 1.7 } ^ { + 1.8 }$ M⊕ and $2.39 _{ - 0.09 } ^ { + 0.10 }$ R⊕, respectively, which translates to a density of $3.88 _{ - 0.80 } ^ { + 0.91 }$ ${\rm g\, cm^{-3}}$. Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments.

 
more » « less
NSF-PAR ID:
10393648
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1606-1627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios. 
    more » « less
  2. ABSTRACT

    We report on the discovery and characterization of three planets orbiting the F8 star HD 28109, which sits comfortably in ${TESS}$’s continuous viewing zone. The two outer planets have periods of $\rm 56.0067 \pm 0.0003~d$ and $\rm 84.2597_{-0.0008}^{+0.0010}~d$, which implies a period ratio very close to that of the first-order 3:2 mean motion resonance, exciting transit timing variations (TTVs) of up to $\rm 60\, min$. These two planets were first identified by ${TESS}$, and we identified a third planet in the ${TESS}$photometry with a period of $\rm 22.8911 \pm 0.0004~d$. We confirm the planetary nature of all three planetary candidates using ground-based photometry from Hazelwood, ${ASTEP}$, and LCO, including a full detection of the $\rm \sim 9\, h$ transit of HD 28109 c from Antarctica. The radii of the three planets are ${\it R}_b=2.199_{-0.10}^{+0.098} ~{\rm R}_{\oplus }$, ${\it R}_c=4.23\pm 0.11~ {\rm R}_{\oplus }$, and ${\it R}_d=3.25\pm 0.11 ~{\rm R}_{\oplus }$; we characterize their masses using TTVs and precise radial velocities from ESPRESSO and HARPS, and find them to be ${\it M}_b=18.5_{-7.6}^{+9.1}~M_{\oplus }$, ${\it M}_c=7.9_{-3.0}^{+4.2}~{\rm M}_{\oplus }$, and ${\it M}_d=5.7_{-2.1}^{+2.7}~{\rm M}_{\oplus }$, making planet b a dense, massive planet while c and d are both underdense. We also demonstrate that the two outer planets are ripe for atmospheric characterization using transmission spectroscopy, especially given their position in the CVZ of James Webb Space Telescope. The data obtained to date are consistent with resonant (librating) and non-resonant (circulating) solutions; additional observations will show whether the pair is actually locked in resonance or just near-resonant.

     
    more » « less
  3. ABSTRACT

    We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.

     
    more » « less
  4. null (Ed.)
    We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright ( V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 ± 0.078  M J planet in a grazing transit configuration with an impact parameter of b = 1.17 −0.08 +0.10 . As a result the radius is poorly constrained, 2.03 −0.49 +0.61 R J . The planet’s distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q s ′ = 10 7 − 10 9 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 ± 0.13  M J and a radius of 1.29 ± 0.02  R J . It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star ( V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 ±0.06  M J and a radius of 1.09 −0.05 +0.08 R J . Despite having the longest orbital period ( P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24. 
    more » « less
  5. ABSTRACT

    In this work, we present the discovery and confirmation of two hot Jupiters orbiting red giant stars, TOI-4377 b and TOI-4551 b, observed by Transiting Exoplanet Survey Satellite in the Southern ecliptic hemisphere and later followed-up with radial-velocity (RV) observations. For TOI-4377 b, we report a mass of $0.957^{+0.089}_{-0.087} \ M_\mathrm{J}$ and a inflated radius of 1.348 ± 0.081 RJ orbiting an evolved intermediate-mass star (1.36 M⊙ and 3.52 R⊙; TIC 394918211) on a period of of 4.378 d. For TOI-4551 b, we report a mass of 1.49 ± 0.13 MJ and a radius that is not obviously inflated of $1.058^{+0.110}_{-0.062} \ R_\mathrm{J}$, also orbiting an evolved intermediate-mass star (1.31 M⊙ and 3.55 R⊙; TIC 204650483) on a period of 9.956 d. We place both planets in context of known systems with hot Jupiters orbiting evolved hosts, and note that both planets follow the observed trend of the known stellar incident flux-planetary radius relation observed for these short-period giants. Additionally, we produce planetary interior models to estimate the heating efficiency with which stellar incident flux is deposited in the planet’s interior, estimating values of $1.91 \pm 0.48~{{\ \rm per\ cent}}$ and $2.19 \pm 0.45~{{\ \rm per\ cent}}$ for TOI-4377 b and TOI-4551 b, respectively. These values are in line with the known population of hot Jupiters, including hot Jupiters orbiting main-sequence hosts, which suggests that the radii of our planets have re-inflated in step with their parent star’s brightening as they evolved into the post-main sequence. Finally, we evaluate the potential to observe orbital decay in both systems.

     
    more » « less