skip to main content


Title: Membrane-mediated dimerization potentiates PIP5K lipid kinase activity
The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid-modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ] lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P 2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here, we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P 2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer–dimer equilibrium. PIP5K monomers can associate with PI(4,5)P 2 -containing membranes and dimerize in a protein density-dependent manner. Although dispensable for cooperative PI(4,5)P 2 binding, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P 2 and membrane-bound kinase.  more » « less
Award ID(s):
2048060
NSF-PAR ID:
10393872
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer-dimer equilibrium. PIP5K monomers can associate with PI(4,5)P2 containing membranes and dimerize in a protein density dependent manner. Although dispensable for PI(4,5)P2 binding and lipid kinase activity, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P2 and membrane bound kinase. 
    more » « less
  2. ABSTRACT Phosphatidylinositol(4,5)-bisphosphate (PtdInsP2) is an important modulator of many cellular processes, and its abundance in the plasma membrane is closely regulated. We examined the hypothesis that members of the Dishevelled scaffolding protein family can bind the lipid kinases phosphatidylinositol 4-kinase (PI4K) and phosphatidylinositol 4-phosphate 5-kinase (PIP5K), facilitating synthesis of PtdInsP2 directly from phosphatidylinositol. We used several assays for PtdInsP2 to examine the cooperative function of phosphoinositide kinases and the Dishevelled protein Dvl3 in the context of two receptor signaling cascades. Simultaneous overexpression of PI4KIIIα (also known as PI4KA) and PIP5KIγ (also known as PIP5K1C) had a synergistic effect on PtdInsP2 synthesis that was recapitulated by overexpression of Dvl3. Increasing the activity of Dvl3 by overexpression increased resting plasma membrane PtdInsP2. Knockdown of Dvl3 reduced resting plasma membrane PtdInsP2 and slowed PtdInsP2 resynthesis following receptor activation. We confirm that Dvl3 promotes coupling of PI4KIIIα and PIP5KIγ and show that this interaction is essential for efficient resynthesis of PtdInsP2 following receptor activation. 
    more » « less
  3. Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast andin planta.In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.

     
    more » « less
  4. Abstract

    The transport of Ca2+across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol‐3‐phosphate (PI3P) by the PI3P‐5‐kinase Fab1 to produce transient PI(3,5)P2pools. Ca2+is also released during vacuole fusion upontrans‐SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2on Ca2+flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2were required for Ca2+uptake into the vacuole, increased concentrations abolished Ca2+efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2or increased endogenous production of by the hyperactivefab1T2250Amutant. In contrast, the lack of PI(3,5)P2on vacuoles from the kinase deadfab1EEEmutant showed delayed and decreased Ca2+uptake. The effects of PI(3,5)P2were linked to the Ca2+pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2. Experiments with Verapamil inhibited Ca2+uptake when added at the start of the assay, while adding it after Ca2+had been taken up resulted in the rapid expulsion of Ca2+. Vacuoles lacking both Pmc1 and the H+/Ca2+exchanger Vcx1 lacked the ability to take up Ca2+and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2can modulate which path predominates.

     
    more » « less
  5. ABSTRACT

    The lipid molecule phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] controls all aspects of plasma membrane (PM) function in animal cells, from its selective permeability to the attachment of the cytoskeleton. Although disruption of PI(4,5)P2 is associated with a wide range of diseases, it remains unclear how cells sense and maintain PI(4,5)P2 levels to support various cell functions. Here, we show that the PIP4K family of enzymes, which synthesize PI(4,5)P2 via a minor pathway, also function as sensors of tonic PI(4,5)P2 levels. PIP4Ks are recruited to the PM by elevated PI(4,5)P2 levels, where they inhibit the major PI(4,5)P2-synthesizing PIP5Ks. Perturbation of this simple homeostatic mechanism reveals differential sensitivity of PI(4,5)P2-dependent signaling to elevated PI(4,5)P2 levels. These findings reveal that a subset of PI(4,5)P2-driven functions might drive disease associated with disrupted PI(4,5)P2 homeostasis.

     
    more » « less