skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: High-throughput sequencing confirms the boundary between traditionally considered species pairs in a group of lichenized fungi (Peltigeraceae, Pseudocyphellaria )
Abstract

Accurate species delimitations are fundamental to our understanding of the genetic diversity on Earth and a vital part in evolutionary and conservation biology research. In lichenized fungi, species pairs have the same morphology and chemistry. They only differ in how they reproduce with one species using sexual reproductive structures and the other using asexual propagules. To classify these as one species or two has been a point of contention, and conclusions based on Sanger sequencing, where sequence data are limited and species boundaries are usually not observed, have been refuted after analysis with genome-scale data such as restriction site-associated DNA sequencing that tends to find fixed genetic differences between the two morphs. Pseudocyphellaria glabra and P. homoeophylla have long been considered a species pair that differ in geographical ranges but co-occur in New Zealand. We used restriction site-associated DNA sequencing data and generated thousands of genetic loci across 53 individuals. The RADseq data provided high-resolution phylogenetic and population genomic information. A maximum-likelihood phylogenetic reconstruction recovered both species as separate lineages, whereas population genetics indicated some evidence for admixture among P. glabra and P. homoeophylla from New Zealand. It is not clear whether the latter is due to ancient polymorphism or recent gene flow. Our study represents another example of the usefulness of RADseq to test species boundaries that segregate closely related species in lichenized fungi.

 
more » « less
PAR ID:
10393999
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Botanical Journal of the Linnean Society
Volume:
201
Issue:
4
ISSN:
0024-4074
Format(s):
Medium: X Size: p. 471-482
Size(s):
p. 471-482
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft Geotria australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16,000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n=186) and sequence data from Cyt-b (766 bp, n=94) and COI (589 bp, n=20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species. 
    more » « less
  2. Abstract

    Transposable elements (TEs) – selfish DNA sequences that can move within the genome – comprise a large proportion of the genomes of many organisms. Although low‐coverage whole‐genome sequencing can be used to survey TE composition, it is noneconomical for species with large quantities of DNA. Here, we utilize restriction‐site associated DNA sequencing (RADSeq) as an alternative method to survey TE composition. First, we demonstrate in silico that double digest restriction‐site associated DNA sequencing (ddRADseq) markers contain the same TE compositions as whole genome assemblies across arthropods. Next, we show empirically using eightSynalpheussnapping shrimp species with large genomes that TE compositions from ddRADseq and low‐coverage whole‐genome sequencing are comparable within and across species. Finally, we develop a new bioinformatic pipeline, TERAD, to extract TE compositions from RADseq data. Our study expands the utility of RADseq to study the repeatome, making comparative studies of genome structure for species with large genomes more tractable and affordable.

     
    more » « less
  3. Abstract

    Restriction‐site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large‐scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often‐complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population‐level variation.

     
    more » « less
  4. Abstract

    Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean. In theory, the heightened dispersal ability of these animals should limit opportunities for species diversification and population differentiation. To test these predictions, we used next‐generation sequencing of genomewide restriction‐site‐associated DNA tags (RADseq) and traditional mitochondrial DNA sequencing, to investigate the species‐level relationships and global population structure ofPlanescrabs collected from oceanic flotsam and sea turtles. Our results indicate that species diversity in this clade is low—likely three closely related species—with no evidence of cryptic or undescribed species. Moreover, our results indicate weak population differentiation among widely separated aggregations with genetic indices showing only subtle genetic discontinuities across all oceans of the world (RADseqFST = 0.08–0.16). The results of this study provide unprecedented resolution of the systematics and global biogeography of this group and contribute valuable information to our understanding of how theoretical dispersal potential relates to actual population differentiation and diversification among marine organisms. Moreover, these results demonstrate the limitations of single gene analyses and the value of genomic‐level resolution for estimating contemporary population structure in organisms with large, highly connected populations.

     
    more » « less
  5. Abstract

    Restriction‐site‐associated DNA sequencing (RADseq) has become an accessible way to obtain genome‐wide data in the form of single‐nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non‐model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well‐supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony‐informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.

     
    more » « less