skip to main content


Title: High-throughput sequencing confirms the boundary between traditionally considered species pairs in a group of lichenized fungi (Peltigeraceae, Pseudocyphellaria )
Abstract

Accurate species delimitations are fundamental to our understanding of the genetic diversity on Earth and a vital part in evolutionary and conservation biology research. In lichenized fungi, species pairs have the same morphology and chemistry. They only differ in how they reproduce with one species using sexual reproductive structures and the other using asexual propagules. To classify these as one species or two has been a point of contention, and conclusions based on Sanger sequencing, where sequence data are limited and species boundaries are usually not observed, have been refuted after analysis with genome-scale data such as restriction site-associated DNA sequencing that tends to find fixed genetic differences between the two morphs. Pseudocyphellaria glabra and P. homoeophylla have long been considered a species pair that differ in geographical ranges but co-occur in New Zealand. We used restriction site-associated DNA sequencing data and generated thousands of genetic loci across 53 individuals. The RADseq data provided high-resolution phylogenetic and population genomic information. A maximum-likelihood phylogenetic reconstruction recovered both species as separate lineages, whereas population genetics indicated some evidence for admixture among P. glabra and P. homoeophylla from New Zealand. It is not clear whether the latter is due to ancient polymorphism or recent gene flow. Our study represents another example of the usefulness of RADseq to test species boundaries that segregate closely related species in lichenized fungi.

 
more » « less
NSF-PAR ID:
10393999
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Botanical Journal of the Linnean Society
Volume:
201
Issue:
4
ISSN:
0024-4074
Format(s):
Medium: X Size: p. 471-482
Size(s):
["p. 471-482"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300–500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites.

    Methods

    Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex.

    Key Results

    All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males.

    Conclusions

    These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.

     
    more » « less
  2. Abstract Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft Geotria australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16,000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n=186) and sequence data from Cyt-b (766 bp, n=94) and COI (589 bp, n=20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species. 
    more » « less
  3. Abstract

    The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of interspecies divergence, the accumulation of intra‐species (i.e., population level) genetic divergence across the mountain‐valley landscape in this region has received less attention. We used genome‐wide restriction site‐associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations ofThitarodes shambalaensis(Lepidoptera: Hepialidae), the host moth of parasiticOphiocordyceps sinensis(Hypocreales: Ophiocordycipitaceae) or caterpillar fungus” endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations ofT.shambalaensis. We found that moth populations separated by less than 10 km exhibited valley‐based population genetic clustering and isolation‐by‐distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML, 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 m apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGMLglaciers. These results reveal the fine‐scale, long‐term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.

     
    more » « less
  4. Abstract Premise

    The ~140 species ofLoniceraare characterized by variously fused leaves, bracteoles, and ovaries, making it a model system for studying the evolution and development of organ fusion. However, previous phylogenetic analyses, based mainly on chloroplast DNA markers, have yielded uncertain and conflicting results. A well‐supported phylogeny ofLonicerawill allow us to trace the evolutionary history of organ fusion.

    Methods

    We inferred the phylogeny ofLonicerausing restriction site–associated DNA sequencing (RADSeq), sampling all major clades and 18 of the 23 subsections. This provided the basis for inferring the evolution of five fusion‐related traits.

    Results

    RADSeq data yielded a well‐resolved and well‐supported phylogeny. The two traditionally recognized subgenera (PericlymenumandChamaecerasus), three of the four sections (Isoxylosteum,Coeloxylosteum, andNintooa), and half of the subsections sampled were recovered as monophyletic. However, the large and heterogeneous sectionIsikawas strongly supported as paraphyletic.Nintooa, a clade of ~22 mostly vine‐forming species, includingL. japonica, was recovered in a novel position, raising the possibility of cytonuclear discordance. We document the parallel evolution of fused leaves, bracteoles, and ovaries, with rare reversals. Most strikingly, complete cupules, in which four fused bracteoles completely enclose two unfused ovaries, arose at least three times. Surprisingly, these appear to have evolved directly from ancestors with free bracteoles instead of partial cupules.

    Conclusions

    We provide the most comprehensive and well‐supported phylogeny ofLonicerato date. Our inference of multiple evolutionary shifts in organ fusion provides a solid foundation for in depth developmental and functional analyses.

     
    more » « less
  5. Abstract

    As genomic-scale data sets become economically feasible for most organisms, a key question for conservation biology is whether the increased resolution offered by new genomic approaches justifies repeating earlier studies based on traditional markers, rather than investing those same time and monetary resources in less-known species. Genomic studies offer clear advantages when the objective is to identify adaptive loci that may be critical to conservation policy-makers. However, the answer is far less certain for the population and landscape studies based on neutral loci that dominate the conservation genetics research agenda. We used Restriction-site Associated DNA sequencing (RADseq) to revisit earlier molecular studies of the IUCN Critically Endangered Magdalena River turtle (Podocnemis lewyana), documenting the conservation insights gained by increasing the number of neutral markers by several orders of magnitude. Earlier research indicated that P. lewyana has the lowest genetic diversity known for any chelonian, and little or no population differentiation among independent rivers. In contrast, the RADseq data revealed discrete population structure with isolation-by-distance within river segments and identified precise population breaks clearly delineating management units. It also confirmed that the species does not have extremely low heterozygosity and that effective population sizes are probably sufficient to maintain long-term evolutionary potential. Contrary to earlier inferences from more limited population genetic markers, our genomic data suggest that management strategies should shift from active genetic rescue to more passive protection without extreme interventions. We conclude with a list of examples of conservation studies in other vertebrates indicating that for many systems a genomic update is worth the investment.

     
    more » « less