skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Frontline Science: Acyl-CoA synthetase 1 exacerbates lipotoxic inflammasome activation in primary macrophages
Abstract

Obesity and diabetes are associated with macrophage dysfunction and increased NLRP3 inflammasome activation. Saturated fatty acids (FAs) are abundant in these metabolic disorders and have been associated with lysosome dysfunction and inflammasome activation in macrophages. However, the interplay between cellular metabolic pathways and lipid-induced toxicity in macrophages remains poorly understood. In this study, we investigated the role of the lipid metabolic enzyme long chain acyl-CoA synthetase (ACSL1) in primary macrophages. ACSL1 is upregulated in TLR4-activated macrophages via a TIR (toll/IL-1R) domain-containing adapter inducing IFN-β (TRIF)-dependent pathway, and knockout of this enzyme decreased NLRP3 inflammasome activation. The mechanism of this response was not related to inflammasome priming, lipid uptake, or endoplasmic reticulum (ER) stress generation. Rather, ACSL1 was associated with mitochondria where it modulated fatty acid metabolism. The development of lysosome damage with palmitate exposure likely occurs via the formation of intracellular crystals. Herein, we provide evidence that loss of ACSL1 in macrophages decreases FA crystal formation thereby reducing lysosome damage and IL-1β release. These findings suggest that targeting lipid metabolic pathways in macrophages may be a strategy to reduce lipotoxity and to decrease pathologic inflammation in metabolic disease.

 
more » « less
PAR ID:
10394043
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Leukocyte Biology
Volume:
106
Issue:
4
ISSN:
0741-5400
Page Range / eLocation ID:
p. 803-814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction between lipid nanoparticles (LNPs) and serum proteins, giving rise to a unique identification in the form of the protein corona, has been shown to be associated with novel recognition by cell receptors. The presence of the corona enveloping the nanoparticle strongly affects the interplay with immune cells. The immune responses mediated by protein corona can affect nanoparticle toxicity and targeting capabilities. But the intracellular signaling of LNPs after corona formation resulting in the change of nanoparticles’ ability to provoke immune responses remains unclear. Therefore, a more systematic and delineated approach must be considered to present the correlation between corona complexes and the shift in nanoparticle immunogenicity. Here, we studied and reported the inhibiting effect of the absorbed proteins on the LNPs on the NLRP3 inflammasome activation, a key intracellular protein complex that modulates several inflammatory responses. Ionizable lipid as a component of LNP was observed to play an important role in modulating the activation of NLRP3 inflammasome in serum-free conditions. However, in the presence of serum proteins, the corona layer on LNPs caused a significant reduction in the inflammasome activation. Reduction in the lysosomal rupture after treatment with corona-LNPs significantly reduced inflammasome activation. Furthermore, a strong reduction of cellular uptake in macrophages after the corona formation was observed. On inspecting the uptake mechanisms in macrophages using transport inhibitors, lipid formulation was found to play a critical role in determining the endocytic pathways for the LNPs in macrophages. This study highlights the need to critically analyze the protein interactions with nanomaterials and their concomitant adaptability with immune cells to evaluate nano–bio surfaces and successfully design nanomaterials for biological applications. 
    more » « less
  2. Abstract

    This article presents assays that allow induction and measurement of activation of different inflammasomes in mouse macrophages, human peripheral blood mononuclear cell (PBMC) cultures, and mouse peritonitis and endotoxic shock models. Basic Protocol 1 describes how to prime the inflammasome in mouse macrophages with different Toll‐like receptor agonists and TNF‐α; how to induce NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation by their corresponding stimuli; and how to measure inflammasome activation‐mediated maturation of interleukin (IL)‐1β and IL‐18 and pyroptosis. Since the well‐established agonists for NLRP1 are inconsistent between mice and humans, Basic Protocol 2 describes how to activate the NLRP1 inflammasome in human PBMCs. Basic Protocol 3 describes how to purify, crosslink, and detect the apoptosis‐associated speck‐like protein containing a CARD (ASC) pyroptosome. Formation of the ASC pyroptosome is a signature of inflammasome activation. A limitation of ASC pyroptosome detection is the requirement of a relatively large cell number. Alternate Protocol 1 is provided to stain ASC pyroptosomes using an anti‐ASC antibody and to measure ASC specks by fluorescence microscopy in a single cell. Intraperitoneal injection of lipopolysaccharides (LPS) and inflammasome agonists will induce peritonitis, which is seen as an elevation of IL‐1β and other proinflammatory cytokines and an infiltration of neutrophils and inflammatory monocytes. Basic Protocol 4 describes how to induce NLRP3 inflammasome activation and peritonitis by priming mice with LPS and subsequently challenging them with monosodium urate (MSU). The method for measuring cytokines in serum and through peritoneal lavage is also described. Finally, Alternate Protocol 2 describes how to induce noncanonical NLRP3 inflammasome activation by high‐dose LPS challenge in a sepsis model. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Priming and activation of inflammasomes in mouse macrophages

    Basic Protocol 2: Activation of human NLRP1 inflammasome by DPP8/9 inhibitor talabostat

    Basic Protocol 3: Purification and detection of ASC pyroptosome

    Alternate Protocol 1: Detection of ASC speck by immunofluorescence staining

    Basic Protocol 4: Activation of canonical NLRP3 inflammasome in mice by intraperitoneal delivery of MSU crystals

    Alternate Protocol 2: Activation of noncanonical NLRP3 inflammasome in mice by intraperitoneal delivery of LPS

     
    more » « less
  3. Abstract Background

    Diabetes mellitus (DM) patients surviving myocardial infarction (MI) have substantially higher mortality due to the more frequent development of subsequent pathological myocardial remodelling and concomitant functional deterioration. This study investigates the molecular pathways underlying accelerated cardiac remodelling in a well‐established mouse model of diabetes exposed to MI.

    Methods and results

    Myocardial infarction in DM mice was established by ligating the left anterior descending coronary artery. Cardiac function was assessed by echocardiography. Myocardial hypertrophy and cardiac fibrosis were determined histologically 6 weeks post‐MI or sham operation. Autophagy, the NLRP3 inflammasome, and caspase‐1 were evaluated by western blotting or immunofluorescence. Echocardiographic imaging revealed significantly increased left ventricular dilation in parallel with increased mortality after MI in DM mice (53.33%) compared with control mice (26.67%,P < 0.05). Immunoblotting, electron microscopy, and immunofluorescence staining for LC3 and p62 indicated impaired autophagy in DM + MI mice compared with control mice (P < 0.05). Furthermore, defective autophagy was associated with increased NLRP3 inflammasome and caspase‐1 hyperactivation in DM + MI mouse cardiomyocytes (P < 0.05). Consistent with NLRP3 inflammasome and caspase‐I hyperactivation, cardiomyocyte death and IL‐1β and IL‐18 secretion were increased in DM + MI mice (P < 0.05). Importantly, the autophagy inducer and the NLRP3 inhibitor attenuated the cardiac remodelling of DM mice after MI.

    Conclusion

    In summary, our results indicate that DM aggravates cardiac remodelling after MI through defective autophagy and associated exaggerated NLRP3 inflammasome activation, proinflammatory cytokine secretion, suggesting that restoring autophagy and inhibiting NLRP3 inflammasome activation may serve as novel targets for the prevention and treatment of post‐infarct remodelling in DM.

     
    more » « less
  4. In the last several years, countless developments have been made to engineer more efficient and potent mRNA lipid nanoparticle vaccines, culminating in the rapid development of effective mRNA vaccines against COVID-19. However, despite these advancements and materials approaches, there is still a lack of understanding of the resultant immunogenicity of mRNA lipid nanoparticles. Therefore, a more mechanistic, design-driven approach needs to be taken to determine which biophysical characteristics, especially related to changes in lipid compositions, drive nanoparticle immunogenicity. Here, we synthesized a panel of six mRNA lipid nanoparticle formulations, varying the concentrations of different lipid components and systematically studied their effect on NLRP3 inflammasome activation; a key intracellular protein complex that controls various inflammatory responses. Initial experiments aimed to determine differences in nanoparticle activation of NLRP3 inflammasomes by IL-1β ELISA, which unveiled that nanoparticles with high concentrations of ionizable lipid DLin-MC3-DMA in tandem with high cationic lipid DPTAP and low cholesterol concentration induced the greatest activation of the NLRP3 inflammasome. These results were further corroborated by the measurement of ASC specks indicative of NLRP3 complex assembly, as well as cleaved gasdermin-D and caspase-1 expression indicating complex activation. We also uncovered these activation profiles to be mechanistically correlated primarily with lysosomal rupturing caused by the delayed membrane disruption capabilities of ionizable lipids until the lysosomal stage, as well as by mitochondrial reactive oxygen species (ROS) production and calcium influx for some of the particles. Therefore, we report that the specific, combined effects of each lipid type, most notably ionizable, cationic lipids, and cholesterol, is a crucial mRNA lipid nanoparticle characteristic that varies the endo/lysosomal rupture capabilities of the formulation and activate NLRP3 inflammasomes in a lysosomal rupture dependent manner. These results provide a more concrete understanding of mRNA lipid Nanoparticle-Associated Molecular Patterns for the activation of molecular-level immune responses and provide new lipid composition design considerations for future mRNA-delivery approaches. 
    more » « less
  5. The inflammasome is a multiprotein complex critical for the innate immune response to injury. Inflammasome activation initiates healthy wound healing, but comorbidities with poor healing, including diabetes, exhibit pathologic, sustained activation with delayed resolution that prevents healing progression. In prior work, we reported the allosteric P2X7 antagonist A438079 inhibits extracellular ATP-evoked NLRP3 signaling by preventing ion flux, mitochondrial reactive oxygen species generation, NLRP3 assembly, mature IL-1β release, and pyroptosis. However, the short half-lifein vivolimits clinical translation of this promising molecule. Here, we develop a controlled release scaffold to deliver A438079 as an inflammasome-modulating wound dressing for applications in poorly healing wounds. We fabricated and characterized tunable thickness, long-lasting silk fibroin dressings and evaluated A438079 loading and release kinetics. We characterized A438079-loaded silk dressingsin vitroby measuring IL-1β release and inflammasome assembly by perinuclear ASC speck formation. We further evaluated the performance of A438079-loaded silk dressings in a full-thickness model of wound healing in genetically diabetic mice and observed acceleration of wound closure by 10 days post-wounding with reduced levels of IL-1β at the wound edge. This work provides a proof-of-principle for translating pharmacologic inhibition of ATP-induced inflammation in diabetic wounds and represents a novel approach to therapeutically targeting a dysregulated mechanism in diabetic wound impairment.

     
    more » « less