skip to main content


Title: High-eccentricity Migration with Disk-induced Spin–Orbit Misalignment: A Preference for Perpendicular Hot Jupiters
Abstract

High-eccentricity migration is a likely formation mechanism for many observed hot Jupiters, particularly those with a large misalignment between the stellar spin axis and orbital angular momentum axis of the planet. In one version of high-eccentricity migration, an inclined stellar companion excites von Zeipel–Lidov–Kozai (ZLK) eccentricity oscillations of a cold Jupiter, and tidal dissipation causes the planet’s orbit to shrink and circularize. Throughout this process, the stellar spin can evolve chaotically, resulting in highly misaligned hot Jupiters (HJs). Previous population studies of this migration mechanism have assumed that the stellar spin is aligned with the planetary orbital angular momentum when the companion begins to induce ZLK oscillations. However, in the presence of a binary companion, the star’s obliquity may be significantly excited during the dissipation of its protoplanetary disk. We calculate the stellar obliquities produced in the protoplanetary disk phase and use these to perform an updated population synthesis of ZLK-driven high-eccentricity migration with an F-type host star. We find that the resulting obliquity distribution of HJ systems is predominantly retrograde with a broad peak near 90°. The distribution we obtain has intriguing similarities to the recently observed preponderance of perpendicular planets close to their host stars.

 
more » « less
NSF-PAR ID:
10394139
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
943
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L13
Size(s):
["Article No. L13"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The obliquity of a star, or the angle between its spin axis and the average orbit normal of its companion planets, provides a unique constraint on that system’s evolutionary history. Unlike the solar system, where the Sun’s equator is nearly aligned with its companion planets, many hot-Jupiter systems have been discovered with large spin–orbit misalignments, hosting planets on polar or retrograde orbits. We demonstrate that, in contrast to stars harboring hot Jupiters on circular orbits, those with eccentric companions follow no population-wide obliquity trend with stellar temperature. This finding can be naturally explained through a combination of high-eccentricity migration and tidal damping. Furthermore, we show that the joint obliquity and eccentricity distributions observed today are consistent with the outcomes of high-eccentricity migration, with no strict requirement to invoke the other hot-Jupiter formation mechanisms of disk migration or in situ formation. At a population-wide level, high-eccentricity migration can consistently shape the dynamical evolution of hot-Jupiter systems.

     
    more » « less
  2. Abstract

    High-eccentricity tidal migration is a potential formation channel for hot Jupiters. During this process, the planetary f-mode may experience a phase of diffusive growth, allowing its energy to quickly build up to large values. In Yu et al., we demonstrated that nonlinear mode interactions between a parent f-mode and daughter f- and p-modes expand the parameter space over which the diffusive growth of the parent is triggered. We extend that study by incorporating (1) the angular momentum transfer between the orbit and the mode, and consequently the evolution of the pericenter distance; (2) a prescription to regulate the nonlinear frequency shift at high parent mode energies; and (3) dissipation of the parent’s energy due to both turbulent convective damping of the daughter modes and strongly nonlinear wave-breaking events. The new ingredients allow us to follow the coupled evolution of the mode and orbit over ≳104yr, covering the diffusive evolution from its onset to its termination. We find that the semimajor axis shrinks by a factor of nearly 10 over 104yr, corresponding to a tidal quality factor10. The f-mode’s diffusive growth terminates while the eccentricity is still high, at arounde= 0.8–0.95. Using these results, we revisit the eccentricity distribution of proto-hot Jupiters. We estimate that less than 1 proto-HJ with eccentricity >0.9 should be expected in Kepler's data once the diffusive regime is accounted for, explaining the observed paucity of this population.

     
    more » « less
  3. Abstract We present spectroscopic measurements of the Rossiter–McLaughlin effect for WASP-148b, the only known hot Jupiter with a nearby warm-Jupiter companion, from the WIYN/NEID and Keck/HIRES instruments. This is one of the first scientific results reported from the newly commissioned NEID spectrograph, as well as the second obliquity constraint for a hot Jupiter system with a close-in companion, after WASP-47. WASP-148b is consistent with being in alignment with the sky-projected spin axis of the host star, with λ = − 8 .° 2 − 9 .° 7 + 8 .° 7 . The low obliquity observed in the WASP-148 system is consistent with the orderly-alignment configuration of most compact multi-planet systems around cool stars with obliquity constraints, including our solar system, and may point to an early history for these well-organized systems in which migration and accretion occurred in isolation, with relatively little disturbance. By contrast, previous results have indicated that high-mass and hot stars appear to more commonly host a wide range of misaligned planets: not only single hot Jupiters, but also compact systems with multiple super-Earths. We suggest that, to account for the high rate of spin–orbit misalignments in both compact multi-planet and isolated-hot-Jupiter systems orbiting high-mass and hot stars, spin–orbit misalignments may be caused by distant giant planet perturbers, which are most common around these stellar types. 
    more » « less
  4. Abstract

    It has been shown that hot Jupiters systems with massive, hot stellar primaries exhibit a wide range of stellar obliquities. On the other hand, hot Jupiter systems with low-mass, cool primaries often have stellar obliquities close to zero. Efficient tidal interactions between hot Jupiters and the convective envelopes present in lower-mass main-sequence stars have been a popular explanation for these observations. If this explanation is accurate, then aligned systems should be older than misaligned systems. Likewise, the convective envelope mass of a hot Jupiter’s host star should be an effective predictor of its obliquity. We derive homogeneous stellar parameters—including convective envelope masses—for hot Jupiter host stars with high-quality sky-projected obliquity inferences. Using a thin-disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that hot Jupiter host stars with larger-than-median obliquities are older than hot Jupiter host stars with smaller-than-median obliquities. The relative age difference between the two populations is larger for hot Jupiter host stars with smaller-than-median fractional convective envelope masses and is significant at the 3.6σlevel. We identify stellar mass, not convective envelope mass, as the best predictor of stellar obliquity in hot Jupiter systems. The best explanation for these observations is that many hot Jupiters in misaligned systems arrived in the close proximity of their host stars long after their parent protoplanetary disks dissipated. The dependence of observed age offset on convective envelope mass suggests that tidal realignment contributes to the population of aligned hot Jupiters orbiting stars with convective envelopes.

     
    more » « less
  5. A planet’s orbital alignment places important constraints on how a planet formed and consequently evolved. The dominant formation pathway of ultra-short-period planets (P < 1 day) is particularly mysterious as such planets most likely formed further out, and it is not well understood what drove their migration inwards to their current positions. Measuring the orbital alignment is difficult for smaller super-Earth/sub-Neptune planets, which give rise to smaller amplitude signals. Here we present radial velocities across two transits of 55 Cancri (Cnc) e, an ultra-short-period super-Earth, observed with the Extreme Precision Spectrograph. Using the classical Rossiter–McLaughlin method, we measure 55 Cnc e’s sky-projected stellar spin–orbit alignment (that is, the projected angle between the The star 55 Cancri (Cnc) A hosts five known exoplanets with minimum mass estimates ranging from approximately 8M⊕ to 3MJup and periods less than one day to nearly 20 years1–4. Of particular interest has been 55 Cnc e, one of the most massive known ultra-short-period planets (USPs) and the only planet around 55 Cnc found to transit5,6. It has an star’s spin axis and the planet’s orbit normal—will shed light on the formation and evolution of USPs, especially in the case of compact, multiplanet systems. It has been shown that USPs form a statistically distinct popula- tion of planets9 that tend to be misaligned with other planetary orbits in their system10. This suggests that USPs experience a unique migra- tion pathway that brings them close in to their host stars. This inward migration is most likely driven by dissipation due to star–planet tidal interactions that result from either non-zero eccentricities11,12 or plan- etary spin-axis tilts13. orbital period of 0.7365474 +1.3 × 10−6 days, a mass of 7.99 ± 0.33M −1.4 × 10−6 ⊕ and a radius of 1.853 +0.026 R⊕ (refs. 7,8). A precise measure of the −0.027 stellar spin–orbit alignment of 55 Cnc e—the angle between the host planet’s orbital axis and its host star’s spin axis) to be λ = 10 +17∘ with an +14∘ −20∘ unprojected angle of ψ = 23 −12∘. The best-fit Rossiter–McLaughlin model to the Extreme Precision Spectrograph data has a radial velocity semi- amplitude of just 0.41 +0.09 m s−1. The spin–orbit alignment of 55 Cnc e −0.10 favours dynamically gentle migration theories for ultra-short-period planets, namely tidal dissipation through low-eccentricity planet–planet interactions and/or planetary obliquity tides. 
    more » « less