skip to main content


Title: Changes in the annual sea ice freeze–thaw cycle in the Arctic Ocean from 2001 to 2018
Abstract. The annual sea ice freeze–thaw cycle plays a crucial role in theArctic atmosphere—ice–ocean system, regulating the seasonal energy balanceof sea ice and the underlying upper-ocean. Previous studies of the sea icefreeze–thaw cycle were often based on limited accessible in situ or easilyavailable remotely sensed observations of the surface. To better understandthe responses of the sea ice to climate change and its coupling to the upperocean, we combine measurements of the ice surface and bottom usingmultisource data to investigate the temporal and spatial variations in thefreeze–thaw cycle of Arctic sea ice. Observations by 69 sea ice mass balancebuoys (IMBs) collected from 2001 to 2018 revealed that the average ice basalmelt onset in the Beaufort Gyre occurred on 23 May (±6 d),approximately 17 d earlier than the surface melt onset. The average icebasal melt onset in the central Arctic Ocean occurred on 17 June (±9 d), which was comparable with the surface melt onset. This difference wasmainly attributed to the distinct seasonal variations of oceanic heatavailable to sea ice melt between the two regions. The overall average onsetof basal ice growth of the pan Arctic Ocean occurred on 14 November (±21 d), lagging approximately 3 months behind the surface freezeonset. This temporal delay was caused by a combination of cooling the seaice, the ocean mixed layer, and the ocean subsurface layer, as well as thethermal buffering of snow atop the ice. In the Beaufort Gyre region, both(Lagrangian) IMB observations (2001–2018) and (Eulerian) moored upward-looking sonar (ULS) observations (2003–2018) revealed a trend towardsearlier basal melt onset, mainly linked to the earlier warming of thesurface ocean. A trend towards earlier onset of basal ice growth was alsoidentified from the IMB observations (multiyear ice), which we attributed tothe overall reduction of ice thickness. In contrast, a trend towards delayedonset of basal ice growth was identified from the ULS observations, whichwas explained by the fact that the ice cover melted almost entirely by theend of summer in recent years.  more » « less
Award ID(s):
2034919
PAR ID:
10394183
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
16
Issue:
12
ISSN:
1994-0424
Page Range / eLocation ID:
4779 to 4796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sea ice growth and decay are critical processes in the Arctic climate system, but comprehensive observations are very sparse. We analyzed data from 23 sea ice mass balance buoys (IMBs) deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2019–2020 to investigate the seasonality and timing of sea ice thermodynamic mass balance in the Arctic Transpolar Drift. The data reveal four stages of the ice season: (I) onset of ice basal freezing, mid-October to November; (II) rapid ice growth, December–March; (III) slow ice growth, April–May; and (IV) melting, June onward. Ice basal growth ranged from 0.64 to 1.38 m at a rate of 0.004–0.006 m d–1, depending mainly on initial ice thickness. Compared to a buoy deployed close to the MOSAiC setup site in September 2012, total ice growth was about twice as high, due to the relatively thin initial ice thickness at the MOSAiC sites. Ice growth from the top, caused by surface flooding and subsequent snow-ice formation, was observed at two sites and likely linked to dynamic processes. Snow reached a maximum depth of 0.25 ± 0.08 m by May 2, 2020, and had melted completely by June 25, 2020. The relatively early onset of ice basal melt on June 7 (±10 d), 2019, can be partly attributed to the unusually rapid advection of the MOSAiC floes towards Fram Strait. The oceanic heat flux, calculated based on the heat balance at the ice bottom, was 2.8 ± 1.1 W m–2 in December–April, and increased gradually from May onward, reaching 10.0 ± 2.6 W m–2 by mid-June 2020. Subsequently, under-ice melt ponds formed at most sites in connection with increasing ice permeability. Our analysis provides crucial information on the Arctic sea ice mass balance for future studies related to MOSAiC and beyond. 
    more » « less
  2. Abstract

    Over the past four decades, there has been a substantial thinning of the summer sea ice cover in the Beaufort Sea. Variations in sea ice mass balance reflect these changes and give insight to the environmental forcings which caused them. In this work, the time series results from eight Lagrangian mass balance sites that operated in the Beaufort Sea over the years 1997–2015 are analyzed. Direct measurements from the sites are combined with estimates of ice/ocean heat input to examine the roll of solar heating on ice loss, growth, and melt rates. Comparisons between ice and snow conditions and mass balance event timing, for example, surface and bottom melt onset, melt peak, and melt end, are also made. From the late 1990s to the present, a general increase in bottom melting and solar heat input to the upper ocean was observed. All sites showed a net loss of ice (ranging from 29 to 271 cm), and all but one site saw the majority of this loss from bottom melting. Bottom melt onset occurred within a relatively narrow 13‐day window between 1 and 13 June at all sites. The amount of observed bottom melt was also related to the heat deposited in the ocean available for melting, underscoring the increasingly important role of ocean thermodynamics in determining sea ice mass balance.

     
    more » « less
  3. Abstract

    Ocean‐to‐ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2over 2006–2012 to 1.63 ± 0.08 W/m2over 2013–2018. We find that this is a result of thinner and less‐compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.

     
    more » « less
  4. null (Ed.)
    Abstract Arctic Ocean surface circulation change should not be viewed as the strength of the anticyclonic Beaufort Gyre. While the Beaufort Gyre is a dominant feature of average Arctic Ocean surface circulation, empirical orthogonal function analysis of dynamic height (1950–89) and satellite altimetry–derived dynamic ocean topography (2004–19) show the primary pattern of variability in its cyclonic mode is dominated by a depression of the sea surface and cyclonic surface circulation on the Russian side of the Arctic Ocean. Changes in surface circulation after Arctic Oscillation (AO) maxima in 1989 and 2007–08 and after an AO minimum in 2010 indicate the cyclonic mode is forced by the AO with a lag of about 1 year. Associated with a one standard deviation increase in the average AO starting in the early 1990s, Arctic Ocean surface circulation underwent a cyclonic shift evidenced by increased spatial-average vorticity. Under increased AO, the cyclonic mode complex also includes increased export of sea ice and near-surface freshwater, a changed path of Eurasian runoff, a freshened Beaufort Sea, and weakened cold halocline layer that insulates sea ice from Atlantic water heat, an impact compounded by increased Atlantic Water inflow and cyclonic circulation at depth. The cyclonic mode’s connection with the AO is important because the AO is a major global scale climate index predicted to increase with global warming. Given the present bias in concentration of in situ measurements in the Beaufort Gyre and Transpolar Drift, a coordinated effort should be made to better observe the cyclonic mode. 
    more » « less
  5. Abstract Under-ice eddies are prevalent in the major circulation system in the western Arctic Ocean, the Beaufort Gyre. Theoretical studies hypothesize that the eddy-driven overturning and the ice-ocean drag are crucial mechanisms of the gyre equilibration in response to atmospheric winds. However, due to severe weather conditions and limitations of remote sensing instruments, there are only sparse eddy observations in the ice-covered Arctic Ocean. Hence, the evolution of the under-ice eddy field, its impact on the gyre variability, and their mutual response to the ongoing Arctic warming remain uncertain. Here, we infer the characteristics of the under-ice eddy field by establishing its tight connection to the angular velocities of isolated spinning sea ice floes in marginal ice zones. Using over two decades of satellite observations of marginal ice zones in the western Arctic Ocean, we identified and tracked thousands of floes and used idealized eddy modeling to infer the interannual evolution of the eddy energetics underneath the ice. We find that the eddy field is strongly correlated to the strength of the Beaufort Gyre on interannual timescales, which provides the major observational evidence consistent with the hypothesis of the gyre equilibration by eddies. The inferred trends over the past two decades signify that the gyre and its eddy field have been intensifying as the sea ice cover has been declining. Our results imply that with continuing sea ice decline, the eddy field and the Beaufort Gyre will keep intensifying and leading to enhanced transport of freshwater and biogeochemical tracers. 
    more » « less