Advances in sequencing technologies have led to a surge in genomic data, although the functions of many gene products coded by these genes remain unknown. While in-depth, targeted experiments that determine the functions of these gene products are crucial and routinely performed, they fail to keep up with the inflow of novel genomic data. In an attempt to address this gap, high-throughput experiments are being conducted in which a large number of genes are investigated in a single study. The annotations generated as a result of these experiments are generally biased towards a small subset of less informative Gene Ontology (GO) terms. Identifying and removing biases from protein function annotation databases is important since biases impact our understanding of protein function by providing a poor picture of the annotation landscape. Additionally, as machine learning methods for predicting protein function are becoming increasingly prevalent, it is essential that they are trained on unbiased datasets. Therefore, it is not only crucial to be aware of biases, but also to judiciously remove them from annotation datasets.
We introduce GOThresher, a Python tool that identifies and removes biases in function annotations from protein function annotation databases.
GOThresher is written in Python and released via PyPI https://pypi.org/project/gothresher/ and on the Bioconda Anaconda channel https://anaconda.org/bioconda/gothresher. The source code is hosted on GitHub https://github.com/FriedbergLab/GOThresher and distributed under the GPL 3.0 license.
Supplementary data are available at Bioinformatics online.
- PAR ID:
- 10394225
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 39
- Issue:
- 1
- ISSN:
- 1367-4803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Background High-throughput sequencing has increased the number of available microbial genomes recovered from isolates, single cells, and metagenomes. Accordingly, fast and comprehensive functional gene annotation pipelines are needed to analyze and compare these genomes. Although several approaches exist for genome annotation, these are typically not designed for easy incorporation into analysis pipelines, do not combine results from different annotation databases or offer easy-to-use summaries of metabolic reconstructions, and typically require large amounts of computing power for high-throughput analysis not available to the average user. Results Here, we introduce MicrobeAnnotator, a fully automated, easy-to-use pipeline for the comprehensive functional annotation of microbial genomes that combines results from several reference protein databases and returns the matching annotations together with key metadata such as the interlinked identifiers of matching reference proteins from multiple databases [KEGG Orthology (KO), Enzyme Commission (E.C.), Gene Ontology (GO), Pfam, and InterPro]. Further, the functional annotations are summarized into Kyoto Encyclopedia of Genes and Genomes (KEGG) modules as part of a graphical output (heatmap) that allows the user to quickly detect differences among (multiple) query genomes and cluster the genomes based on their metabolic similarity. MicrobeAnnotator is implemented in Python 3 and is freely available under an open-source Artistic License 2.0 from https://github.com/cruizperez/MicrobeAnnotator . Conclusions We demonstrated the capabilities of MicrobeAnnotator by annotating 100 Escherichia coli and 78 environmental Candidate Phyla Radiation (CPR) bacterial genomes and comparing the results to those of other popular tools. We showed that the use of multiple annotation databases allows MicrobeAnnotator to recover more annotations per genome compared to faster tools that use reduced databases and is computationally efficient for use in personal computers. The output of MicrobeAnnotator can be easily incorporated into other analysis pipelines while the results of other annotation tools can be seemingly incorporated into MicrobeAnnotator to generate summary plots.more » « less
-
Annotating the genomes of multiple species allows us to analyze the evolution of their genes. While many eukaryotic genome assemblies already include computational gene predictions, these predictions can benefit from review and refinement through manual gene annotation. The Genomics Education Partnership (GEP; https://thegep.org/ ) developed a structural annotation protocol for protein-coding genes that enables undergraduate student and faculty researchers to create high-quality gene annotations that can be utilized in subsequent scientific investigations. For example, this protocol has been utilized by the GEP faculty to engage undergraduate students in the comparative annotation of genes involved in the insulin signaling pathway in 27 Drosophila species, using D. melanogaster as the reference genome. Students construct gene models using multiple lines of computational and empirical evidence including expression data (e.g., RNA-Seq), sequence similarity (e.g., BLAST and multiple sequence alignment), and computational gene predictions. Quality control measures require each gene be annotated by at least two students working independently, followed by reconciliation of the submitted gene models by a more experienced student. This article provides an overview of the annotation protocol and describes how discrepancies in student submitted gene models are resolved to produce a final, high-quality gene set suitable for subsequent analyses. The protocol can be adapted to other scientific questions (e.g., expansion of the Drosophila Muller F element) and species (e.g., parasitoid wasps) to provide additional opportunities for undergraduate students to participate in genomics research. These student annotation efforts can substantially improve the quality of gene annotations in publicly available genomic databases.more » « less
-
Abstract Premise The functional annotation of genes is a crucial component of genomic analyses. A common way to summarize functional annotations is with hierarchical gene ontologies, such as the Gene Ontology (GO) Resource. GO includes information about the cellular location, molecular function(s), and products/processes that genes produce or are involved in. For a set of genes, summarizing GO annotations using pre‐defined, higher‐order terms (GO slims) is often desirable in order to characterize the overall function of the data set, and it is impractical to do this manually. Methods and Results The GOgetter pipeline consists of bash and Python scripts. From an input FASTA file of nucleotide gene sequences, it outputs text and image files that list (1) the best hit for each input gene in a set of reference gene models, (2) all GO terms and annotations associated with those hits, and (3) a summary and visualization of GO slim categories for the data set. These output files can be queried further and analyzed statistically, depending on the downstream need(s). Conclusions GO annotations are a widely used “universal language” for describing gene functions and products. GOgetter is a fast and easy‐to‐implement pipeline for obtaining, summarizing, and visualizing GO slim categories associated with a set of genes.more » « less
-
Abstract Objectives The new data provide an important genomic resource for the Critically Endangered Cuban crocodile (
Crocodylus rhombifer ). Cuban crocodiles are restricted to the Zapata Swamp in southern Matanzas Province, Cuba, and readily hybridize with the widespread American crocodile (Crocodylus acutus ) in areas of sympatry. The reported de novo assembly will contribute to studies of crocodylian evolutionary history and provide a resource for informing Cuban crocodile conservation.Data description The final 2.2 Gb draft genome for
C. rhombifer consists of 41,387 scaffolds (contigs: N50 = 104.67 Kb; scaffold: N50-518.55 Kb). Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 92.3% of the 3,354 genes in the vertebrata_odb10 database. Approximately 42% of the genome (960Mbp) comprises repeat elements. We predicted 30,138 unique protein-coding sequences (17,737 unique genes) in the genome assembly. Functional annotation found the top Gene Ontology annotations for Biological Processes, Molecular Function, and Cellular Component were regulation, protein, and intracellular, respectively. This assembly will support future macroevolutionary, conservation, and molecular studies of the Cuban crocodile. -
Abstract Motivation Many protein function databases are built on automated or semi-automated curations and can contain various annotation errors. The correction of such misannotations is critical to improving the accuracy and reliability of the databases. Results We proposed a new approach to detect potentially incorrect Gene Ontology (GO) annotations by comparing the ratio of annotation rates (RAR) for the same GO term across different taxonomic groups, where those with a relatively low RAR usually correspond to incorrect annotations. As an illustration, we applied the approach to 20 commonly-studied species in two recent UniProt-GOA releases and identified 250 potential misannotations in the 2018-11-6 release, where only 25% of them were corrected in the 2019-6-3 release. Importantly, 56% of the misannotations are “Inferred from Biological aspect of Ancestor (IBA)” which is in contradiction with previous observations that attributed misannotations mainly to “Inferred from Sequence or structural Similarity (ISS)”, probably reflecting an error source shift due to the new developments of function annotation databases. The results demonstrated a simple but efficient misannotation detection approach that is useful for large-scale comparative protein function studies. Availability https://zhanglab.ccmb.med.umich.edu/RAR Supplementary information Supplementary data are available at Bioinformatics online.more » « less