Abstract High‐coherence visible and near‐visible laser sources are centrally important to the operation of advanced position/navigation/timing systems as well as classical/quantum sensing systems. However, the complexity and size of these bench‐top lasers are an impediment to their transition beyond the laboratory. Here, a system‐on‐chip that emits high‐coherence near‐visible lightwaves is demonstrated. The devices rely upon a new approach wherein wavelength conversion and coherence increase by self‐injection locking are combined within a single nonlinear resonator. This simplified approach is demonstrated in a hybridly‐integrated device and provides a short‐term linewidth of around 4.7 kHz (10 kHz before filtering). On‐chip converted optical power over 2 mW is also obtained. Moreover, measurements show that heterogeneous integration can result in a conversion efficiency higher than 25% with an output power over 11 mW. Because the approach uses mature III–V pump lasers in combination with thin‐film lithium niobate, it can be scaled for low‐cost manufacturing of high‐coherence visible emitters. Also, the coherence generation process can be transferred to other frequency conversion processes, including optical parametric oscillation, sum/difference frequency generation, and third‐harmonic generation.
more »
« less
Compensation of Kerr-induced impairments in silicon nitride third-harmonic generators
Integrated third-harmonic generators enable on-chip wavelength conversion translating telecom signals to the visible spectrum. Despite the desirable functionality, the device performance is susceptible to phase distortions. Here, we present a design method of compensating the Kerr-induced distortions in third-harmonic generation. The design method yields a chirped Bragg grating theoretically improving the conversion efficiency by ∼30 dB. We envision the design method will pave the way for demonstrating efficient infrared-to-visible upconversion in silicon nitride chips.
more »
« less
- PAR ID:
- 10394226
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 5229
- Size(s):
- Article No. 5229
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Third harmonic generation (THG) provides a valuable, label-free approach to imaging biological systems. To date, THG microscopy has been performed using point-scanning methods that rely on intensity measurements lacking phase information of the complex field. We report the first demonstration, to the best of our knowledge, of THG holographic microscopy and the reconstruction of the complex THG signal field with spatial synthetic aperture imaging. Phase distortions arising from measurement-to-measurement fluctuations and imaging components cause optical aberrations in the reconstructed THG field. We have developed an aberration-correction algorithm that estimates and corrects these phase distortions to reconstruct the spatial synthetic aperture THG field without optical aberrations.more » « less
-
Abstract Ultrafast adiabatic frequency conversion is a powerful method, capable of efficiently and coherently transfering ultrashort pulses between different spectral ranges, e.g. from near-infrared to mid-infrared, visible or ultra-violet. This is highly desirable in research fields that are currently limited by available ultrafast laser sources, e.g. attosecond science, strong-field physics, high-harmonic generation spectroscopy and multidimensional mid-infrared spectroscopy. Over the past decade, adiabatic frequency conversion has substantially evolved. Initially applied to quasi-monochromatic, undepleted pump interactions, it has been generalized to include ultrashort, broadband, fully-nonlinear dynamics. Through significant theoretical development and experimental demonstrations, it has delivered new capabilities and superior performance in terms of bandwidth, efficiency and robustness, as compared to other frequency conversion techniques. This article introduces the concept of adiabatic nonlinear frequency conversion, reviews its theoretical foundations, presents significant milestones and highlights contemporary ultrafast applications that may, or already do, benefit from utilizing this method.more » « less
-
Abstract Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As 2 S 3 -based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range.more » « less
-
We report a ∼3-fold enhancement of third-harmonic generation (THG) conversion efficiency using indium tin oxide (ITO) nanoparticles on the surface of an ultra-high-Qsilica microsphere. This is one of the largest microcavity-based THG enhancements reported. Phase-matching and spatial mode overlap are explored numerically to determine the microsphere radius (∼29 µm) and resonant mode numbers that maximize THG. Furthermore, the ITO nanoparticles are uniformly bonded to the cavity surface by drop-casting, eliminating the need for complex fabrication. The significant improvement in THG conversion efficiency establishes functionalized ITO microcavities as a promising tool for broadband frequency conversion, nonlinear enhancement, and applications in integrated photonics.more » « less
An official website of the United States government
