skip to main content


Title: HyperNP: Interactive Visual Exploration of Multidimensional Projection Hyperparameters
Abstract

Projection algorithms such as t‐SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperparameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter values is computationally intensive and unintuitive due to the stochastic nature of such methods. In this paper we propose HyperNP, a scalable method that allows for real‐time interactive hyperparameter exploration of projection methods by training neural network approximations. A HyperNP model can be trained on a fraction of the total data instances and hyperparameter configurations that one would like to investigate and can compute projections for new data and hyperparameters at interactive speeds. HyperNP models are compact in size and fast to compute, thus allowing them to be embedded in lightweight visualization systems. We evaluate the performance of HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP models are accurate, scalable, interactive, and appropriate for use in real‐world settings.

 
more » « less
Award ID(s):
1939945 1940175
NSF-PAR ID:
10406066
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
41
Issue:
3
ISSN:
0167-7055
Page Range / eLocation ID:
p. 169-181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Projection algorithms such as t-SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperpa- rameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter values is computationally intensive and unintuitive due to the stochastic nature of such methods. In this paper we propose Hy- perNP, a scalable method that allows for real-time interactive hyperparameter exploration of projection methods by training neural network approximations. A HyperNP model can be trained on a fraction of the total data instances and hyperparameter configurations that one would like to investigate and can compute projections for new data and hyperparameters at interactive speeds. HyperNP models are compact in size and fast to compute, thus allowing them to be embedded in lightweight visualiza- tion systems. We evaluate the performance of HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP models are accurate, scalable, interactive, and appropriate for use in real-world settings. 
    more » « less
  2. null (Ed.)
    We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP. 
    more » « less
  3. Gaussian processes (GPs) provide flexible distributions over functions, with inductive biases controlled by a kernel. However, in many applications Gaussian processes can struggle with even moderate input dimensionality. Learning a low dimensional projection can help alleviate this curse of dimensionality, but introduces many trainable hyperparameters, which can be cumbersome, especially in the small data regime. We use additive sums of kernels for GP regression, where each kernel operates on a different random projection of its inputs. Surprisingly, we find that as the number of random projections increases, the predictive performance of this approach quickly converges to the performance of a kernel operating on the original full dimensional inputs, over a wide range of data sets, even if we are projecting into a single dimension. As a consequence, many problems can remarkably be reduced to one dimensional input spaces, without learning a transformation. We prove this convergence and its rate, and additionally propose a deterministic approach that converges more quickly than purely random projections. Moreover, we demonstrate our approach can achieve faster inference and improved predictive accuracy for high-dimensional inputs compared to kernels in the original input space. 
    more » « less
  4. Abstract

    The rapid expansion of Earth system model (ESM) data available from the Coupled Model Intercomparison Project Phase 6 (CMIP6) necessitates new methods to evaluate the performance and suitability of ESMs used for hydroclimate applications as these extremely large data volumes complicate stakeholder efforts to use new ESM outputs in updated climate vulnerability and impact assessments. We develop an analysis framework to inform ESM sub‐selection based on process‐oriented considerations and demonstrate its performance for a regional application in the US Pacific Northwest. First, a suite of global and regional metrics is calculated, using multiple historical observation datasets to assess ESM performance. These metrics are then used to rank CMIP6 models, and a culled ensemble of models is selected using a trend‐related diagnostics approach. This culling strategy does not dramatically change climate scenario trend projections in this region, despite retaining only 20% of the CMIP6 ESMs in the final model ensemble. The reliability of the culled trend projection envelope and model response similarity is also assessed using a perfect model framework. The absolute difference in temperature trend projections is reduced relative to the full ensemble compared to the model for each SSP scenario, while precipitation trend errors are largely unaffected. In addition, we find that the spread of the culled ensemble temperature and precipitation trends includes the trend of the “truth” model ∼83%‐92% of the time. This analysis demonstrates a reliable method to reduce ESM ensemble size that can ease use of ESMs for creating and understanding climate vulnerability and impact assessments.

     
    more » « less
  5. We present an end-to-end method for capturing the dynamics of 3D human characters and translating them for synthesizing new, visually-realistic motion sequences. Conventional methods employ sophisticated, but generic, control approaches for driving the joints of articulated characters, paying little attention to the distinct dynamics of human joint movements. In contrast, our approach attempts to synthesize human-like joint movements by exploiting a biologically-plausible, compact network of spiking neurons that drive joint control in primates and rodents. We adapt the controller architecture by introducing learnable components and propose an evolutionary algorithm for training the spiking neural network architectures and capturing diverse joint dynamics. Our method requires only a few samples for capturing the dynamic properties of a joint's motion and exploits the biologically-inspired, trained controller for its reconstruction. More importantly, it can transfer the captured dynamics to new visually-plausible motion sequences. To enable user-dependent tailoring of the resulting motion sequences, we develop an interactive framework that allows for editing and real-time visualization of the controlled 3D character. We also demonstrate the applicability of our method to real human motion capture data by learning the hand joint dynamics from a gesture dataset and using our framework to reconstruct the gestures with our 3D animated character. The compact architecture of our joint controller emerging from its biologically-realistic design, and the inherent capacity of our evolutionary learning algorithm for parallelization, suggest that our approach could provide an efficient and scalable alternative for synthesizing 3D character animations with diverse and visually-realistic motion dynamics.

     
    more » « less