Abstract During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
more »
« less
The miR156 juvenility factor and PLETHORA 2 form a regulatory network and influence timing of meristem growth and lateral root emergence
ABSTRACT Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.
more »
« less
- Award ID(s):
- 1656621
- PAR ID:
- 10394342
- Date Published:
- Journal Name:
- Development
- Volume:
- 149
- Issue:
- 21
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding how plants respond to temperature is relevant for agriculture in a warming world. Responses to temperature in the shoot have been characterized more fully than those in the root. Previous work on thermomorphogenesis in roots established that for Arabidopsis thaliana (Columbia) seedlings grown continuously at a given temperature, the root meristem produces cells at the same rate at 15°C as at 25°C and the root’s growth zone is the same length. To uncover the pathway(s) underlying this constancy, we screened 34 A. thaliana genotypes for parameters related to growth and division. No line failed to respond to temperature. Behavior was little affected by mutations in phytochrome or other genes that underly thermomorphogenesis in shoots. However, a mutant in cryptochrome 2 was disrupted substantially in both cell division and elongation, specifically at 15°C. Among the 34 lines, cell production rate varied extensively and was associated only weakly with root growth rate; in contrast, parameters relating to elongation were stable. Our data are consistent with models of root growth that invoke cell non-autonomous regulation for establishing boundaries between meristem, elongation zone and mature zone.more » « less
-
Beckles, Diane (Ed.)Abstract Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (a Gγ subunit) of rice and TaNBP1 (a Gβ subunit) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins in yield and nitrogen use efficiency (NUE), overexpression transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), AtAGB1 together with AtAGG2 (AGB1-AGG2), and AtAGB1 together with AtAGG3 (AGB1-AGG3) were created in Brassica napus ‘K407’. Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 led to increased biomass of seedling plants, including a well-developed root system, and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase, a key nitrogen assimilating enzyme, and the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpression plants under the low nitrogen condition. These properties enabled overexpression plants to increase the number of seeds per silique by 12–27% only under the low nitrogen condition, effectively improving yield per plant by 9–69% and NUE by 7–49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE.more » « less
-
Dubrovsky, Joseph (Ed.)Abstract A fundamental question in developmental biology is how the progeny of stem cells become differentiated tissues. The Arabidopsis root is a tractable model to address this question due to its simple organization and defined cell lineages. In particular, the zone of dividing cells at the root tip—the root apical meristem—presents an opportunity to map the gene regulatory networks underlying stem cell niche maintenance, tissue patterning, and cell identity acquisition. To identify molecular regulators of these processes, studies over the last 20 years employed global profiling of gene expression patterns. However, these technologies are prone to information loss due to averaging gene expression signatures over multiple cell types and/or developmental stages. Recently developed high-throughput methods to profile gene expression at single-cell resolution have been successfully applied to plants. Here, we review insights from the first published single-cell mRNA sequencing and chromatin accessibility datasets generated from Arabidopsis roots. These studies successfully reconstruct developmental trajectories, phenotype cell identity mutants at unprecedented resolution, and reveal cell type-specific responses to environmental stimuli. The experimental insight gained from Arabidopsis paves the way to profile roots from additional species.more » « less
-
The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots ofMedicago truncatulais SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors inArabidopsisinvolved in regulating stem cell populations in the root and shoot. This class of receptors inArabidopsisincludes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development.M. truncatulacontains five members of theBAMfamily, but onlyMtBAM1andMtBAM2are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individualMtBAMs, and several doubleBAMmutant combinations all displayed wild-type nodule number phenotypes. However,Mtbam2suppressed thesunn-5hypernodulation phenotype and partially rescued the short root length phenotype ofsunn-5 when present in asunn-5background. Grafting determined thatbam2suppresses supernodulation from the roots, regardless of theSUNNstatus of the root. Overexpression ofMtBAM2in wild-type plants increases nodule numbers, while overexpression ofMtBAM2in somesunnmutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutantrdn1-2orcrn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putativebam2 sunn-5complex revealed disruption of meristem signaling; while bothbam2andbam2 sunn-5influenceMtWOX5expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis inM. truncatula.more » « less
An official website of the United States government

