skip to main content


Title: Legionella pneumophila occurrence in drinking water supplied by private wells
Abstract

Unregulated private wells are understudied potential sources of community-acquired Legionnaires’ disease. Here we conducted a comprehensive survey of 44 homes supplied by private wells in Wake County, North Carolina, quantifying Legionella spp. DNA, Legionella pneumophila DNA, and total bacterial 16S rRNA genes via real-time polymerase chain reaction in hot and cold drinking water samples, along with culturable L. pneumophila via IDEXX Legiolert in cold drinking water samples. Legionella spp. DNA, L. pneumophila DNA and culturable L. pneumophila were detected in 100, 65·5 and 15·9% of the 44 homes, respectively, and culturable levels were comparable to some municipal surveys applying the same methods. Total coliforms and Escherichia coli were monitored as representative faecal indicators and were found in 20·4 and 0·0% of homes. Within certain sample types, Legionella spp. and L. pneumophila gene copy numbers were positively associated with total bacteria (i.e. total 16S rRNA genes) and water softener use, but were not associated with faecal indicator bacteria, inorganic water parameters or other well characteristics. These findings confirm that occurrence of Legionella and L. pneumophila is highly variable in private wells.

Significance and Impact of the Study

Legionella is the leading identified cause of waterborne disease outbreaks associated with US municipal water systems. While Legionella is known to occur naturally in groundwater, prior efforts to characterize its occurrence in unregulated private wells are limited to sampling at the wellhead and not in the home plumbing where Legionella can thrive. This work documents much higher levels of Legionella in home plumbing versus water directly from private wells and examines factors associated with higher Legionella occurrence.

 
more » « less
NSF-PAR ID:
10394492
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Letters in Applied Microbiology
Volume:
70
Issue:
4
ISSN:
0266-8254
Page Range / eLocation ID:
p. 232-240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kumar, Bimlesh (Ed.)

    Various spatiotemporal, hydraulic, and water quality parameters can affect the microbial community composition of water within drinking water distribution systems (DWDSs). Although some relationships between various paravmeters and microbial growth are known, the effects of spatial and temporal trends on particle-associated microbial communities in chlorinated DWDSs remain poorly understood. The objectives of this study were to characterize the microbial community composition of both particle-associated bacteria (PAB) and total bacteria (TB) within a full-scale chlorinated DWDS, and assess relationships between microbiavvl community and various spatiotemporal, hydraulic, and water quality parameters. Bulk water samples were collected from the treatment plant, a storage tank, and 12 other sites in a rural chlorinated DWDS at varying distances from the treatment plant on four sampling dates spanning six months. Amplicon sequencing targeting the 16S rRNA gene was performed to characterize the microbial community. Gammaproteobacteria dominated the DWDS, and hydraulic parameters were well-correlated with differences in microbial communities between sites. Results indicate that hydraulic changes may have led to the detachment of biofilms and loose deposits, subsequently affecting the microbial community composition at each site. Spatial variations in microbial community were stronger than temporal variations, differing from similar studies and indicating that the highly varied hydraulic conditions within this system may intensify spatial variations. Genera containing pathogenic species were detected, withLegionellaandPseudomonasdetected at every site at least once andMycobacteriumdetected at most sites. However, only one sample had quantifiablePseudomonas aeruginosathrough quantitative polymerase chain reaction (qPCR), and no samples had quantifiableLegionella pneumophilaorMycobacterium avium, indicating a low human health risk. This study establishes spatial variations in PAB associated with varied hydraulic conditions as an important factor driving microbial community within a chlorinated DWDS.

     
    more » « less
  2. null (Ed.)
    Flint, MI experienced two outbreaks of Legionnaires’ Disease (LD) during the summers of 2014 and 2015, coinciding with use of Flint River as a drinking water source without corrosion control. Using simulated distribution systems (SDSs) followed by stagnant simulated premise (i.e., building) plumbing reactors (SPPRs) containing cross-linked polyethylene (PEX) or copper pipe, we reproduced trends in water chemistry and Legionella proliferation observed in the field when Flint River versus Detroit water were used before, during, and after the outbreak. Specifically, due to high chlorine demand in the SDSs, SPPRs with treated Flint River water were chlorine deficient and had elevated L. pneumophila numbers in the PEX condition. SPPRs with Detroit water, which had lower chlorine demand and higher residual chlorine, lost all culturable L. pneumophila within two months. L. pneumophila also diminished more rapidly with time in Flint River SPPRs with copper pipe, presumably due to the bacteriostatic properties of elevated copper concentrations caused by lack of corrosion control and stagnation. This study confirms hypothesized mechanisms by which the switch in water chemistry, pipe materials, and different flow patterns in Flint premise plumbing may have contributed to observed LD outbreak patterns. 
    more » « less
  3. Abstract

    Following the 2021 Marshall Fire in Colorado, this study was conducted to better understand private well and plumbing damage and to develop public health guidance. More than 20 post‐fire drinking water well guidance documents with varied recommendations were found. Approximately 227 wells were located in the fire footprint. Seventeen properties were visited, and a subset of wells were sampled for organic and inorganic contaminants. Property debris was also collected. Benzene, toluene, and 19 semi‐volatile organic compounds (SVOCs) were detected in water extracts of property debris. No wells contained volatile organic compound contamination. Two shallow wells (12 and 15 ft) had debris contamination; one well contained notable SVOC contamination. One multi‐home unregulated well system was extensively damaged, lost pressure, and had not been repressurized 11 months after the fire due to financial and technical challenges. Study results highlight the need for follow‐up work to understand well system damage and household response.

     
    more » « less
  4. Abstract

    Private wells often lack centralized oversight, drinking water quality standards, and consistent testing methodologies. For lead in well water, the lack of standardized data collection methods can impact reported measurements, which can misinform health risks. Here, we conducted a targeted community science testing of 1143 wells across 17 counties in North Carolina (USA) and compared results to state testing data primarily associated with new well construction compiled in the NCWELL database. The goal of our study was to explore the impacts of sampling methodology and household representation on estimated lead exposures and subsequent health risks. At the household scale, we illustrated how sampling and analytical techniques impact lead measurements. The community science testing first draw samples (characterizing drinking water) had a 90th percentile lead value of 12.8μg l−1while the NCWELL database flushed samples (characterizing groundwater) had a value below the reporting level of 5μg l−1. As lead was associated with the corrosion of premise plumbing, flushing prior to collection substantially reduced lead concentrations. At the community scale, we examined how the lack of representation based on household demographics and well construction characteristics impacted the knowledge of lead and blood lead level (BLL) occurrence. When simulating representative demographics of the well populations, we observed that the 90th percentile lead level could differ by up to 6μg l−1, resulting in communities being above the USEPA action level. This translated to a 1.0–1.3μg dl−1difference in predicted geometric mean BLL among infants consuming reconstituted formula. Further, inclusion of less common well construction types also increased lead in water occurrence. Overall, under- and overestimations of lead concentrations associated with differences in sampling techniques and sample representation can misinform conclusions about risks of elevated BLLs associated with drinking water from private wells which may hinder investigations of waterborne lead exposure.

     
    more » « less
  5. Herrera, Manuel (Ed.)
    Three buildings that were repurposed for use as an elementary school were shutdown for three months in response to the pandemic. Building cold and hot water quality was monitored before reopening to detect and resolve chemical and microbiological problems. The authors collected first draw pre-flush and post-flush water samples. First draw water samples did not contain detectable disinfectant residual, but nickel and lead sometimes exceeded the health-based action limits for cold water (max. 144 μg Ni/L, 3.4 μg Pb/L). Stagnant cold water at a bathroom sink (188 MPN/100 mL) and drinking water fountain (141.6 MPN/100 mL), in the same building, exceeded the L . pneumophila thresholds advised by the World Health Organization (WHO) (10 CFU/mL) and American Industrial Hygiene Association (AIHA) (100 CFU/mL). Fixture flushing was conducted to remove cold and hot stagnant water and no L . pneumophila was detected immediately after flushing. Two weeks after no subsequent building water use, chemical and microbiological contaminant levels were found to be similar to levels prior to flushing with one exception. The maximum L . pneumophila level (kitchen sink, hot water: 61.1 MPN/100 mL) was found in a different building than the prior maximum detections. No repeat positive locations for L . pneumophila were found during the second visit, but new fixtures were positive the organism. When this study was conducted no evidence-based guidelines for plumbing recommissioning were available. A single plumbing flush reduced heavy metal and L . pneumophila levels below WHO and AIHA thresholds in all three buildings. Additional work is needed to examine the role of building size, type and plumbing design on fixture water quality in shutdown buildings. 
    more » « less