The crux of molecular property prediction is to generate meaningful representations of the molecules. One promising route is to exploit the molecular graph structure through graph neural networks (GNNs). Both atoms and bonds significantly affect the chemical properties of a molecule, so an expressive model ought to exploit both node (atom) and edge (bond) information simultaneously. Inspired by this observation, we explore the multi-view modeling with GNN (MVGNN) to form a novel paralleled framework, which considers both atoms and bonds equally important when learning molecular representations. In specific, one view is atom-central and the other view is bond-central, then the two views are circulated via specifically designed components to enable more accurate predictions. To further enhance the expressive power of MVGNN, we propose a cross-dependent message-passing scheme to enhance information communication of different views. The overall framework is termed as CD-MVGNN.
We theoretically justify the expressiveness of the proposed model in terms of distinguishing non-isomorphism graphs. Extensive experiments demonstrate that CD-MVGNN achieves remarkably superior performance over the state-of-the-art models on various challenging benchmarks. Meanwhile, visualization results of the node importance are consistent with prior knowledge, which confirms the interpretability power of CD-MVGNN.
The code and data underlying more »
Supplementary data are available at Bioinformatics online.
- Publication Date:
- NSF-PAR ID:
- 10394805
- Journal Name:
- Bioinformatics
- Volume:
- 38
- Issue:
- 7
- Page Range or eLocation-ID:
- p. 2003-2009
- ISSN:
- 1367-4803
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract—Materials Genomics initiative has the goal of rapidly synthesizing materials with a given set of desired properties using data science techniques. An important step in this direction is the ability to predict the outcomes of complex chemical reactions. Some graph-based feature learning algorithms have been proposed recently. However, the comprehensive relationship between atoms or structures is not learned properly and not explainable, and multiple graphs cannot be handled. In this paper, chemical reaction processes are formulated as translation processes. Both atoms and edges are mapped to vectors represent- ing the structural information. We employ the graph convolution layers to learn meaningful information of atom graphs, and further employ its variations, message passing networks (MPNN) and edge attention graph convolution network (EAGCN) to learn edge representations. Particularly, multi-view EAGCN groups and maps edges to a set of representations for the properties of the chemical bond between atoms from multiple views. Each bond is viewed from its atom type, bond type, distance and neighbor environment. The final node and edge representations are mapped to a sequence defined by the SMILES of the molecule and then fed to a decoder model with attention. To make full usage of multi-view information, we propose multi-viewmore »
-
Abstract Motivation Modeling the structural plasticity of protein molecules remains challenging. Most research has focused on obtaining one biologically active structure. This includes the recent AlphaFold2 that has been hailed as a breakthrough for protein modeling. Computing one structure does not suffice to understand how proteins modulate their interactions and even evade our immune system. Revealing the structure space available to a protein remains challenging. Data-driven approaches that learn to generate tertiary structures are increasingly garnering attention. These approaches exploit the ability to represent tertiary structures as contact or distance maps and make direct analogies with images to harness convolution-based generative adversarial frameworks from computer vision. Since such opportunistic analogies do not allow capturing highly structured data, current deep models struggle to generate physically realistic tertiary structures.
Results We present novel deep generative models that build upon the graph variational autoencoder framework. In contrast to existing literature, we represent tertiary structures as ‘contact’ graphs, which allow us to leverage graph-generative deep learning. Our models are able to capture rich, local and distal constraints and additionally compute disentangled latent representations that reveal the impact of individual latent factors. This elucidates what the factors control and makes our models more interpretable. Rigorous comparative evaluationmore »
Availability and implementation Code is available at https://github.com/anonymous1025/CO-VAE.
Supplementary information Supplementary data are available at Bioinformatics Advances online.
-
Abstract Motivation While traditionally utilized for identifying site-specific metabolic activity within a compound to alter its interaction with a metabolizing enzyme, predicting the site-of-metabolism (SOM) is essential in analyzing the promiscuity of enzymes on substrates. The successful prediction of SOMs and the relevant promiscuous products has a wide range of applications that include creating extended metabolic models (EMMs) that account for enzyme promiscuity and the construction of novel heterologous synthesis pathways. There is therefore a need to develop generalized methods that can predict molecular SOMs for a wide range of metabolizing enzymes.
Results This article develops a Graph Neural Network (GNN) model for the classification of an atom (or a bond) being an SOM. Our model, GNN-SOM, is trained on enzymatic interactions, available in the KEGG database, that span all enzyme commission numbers. We demonstrate that GNN-SOM consistently outperforms baseline machine learning models, when trained on all enzymes, on Cytochrome P450 (CYP) enzymes, or on non-CYP enzymes. We showcase the utility of GNN-SOM in prioritizing predicted enzymatic products due to enzyme promiscuity for two biological applications: the construction of EMMs and the construction of synthesis pathways.
more »Availability and implementation A python implementation of the trained SOM predictor model can be found at https://github.com/HassounLab/GNN-SOM.
-
Abstract Motivation Accurately predicting drug–target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks.
Results Inspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g. compound–protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning.
Availability and implementation The source code and datamore »
Supplementary information Supplementary data are available at Bioinformatics online.
-
Abstract Motivation Properties of molecules are indicative of their functions and thus are useful in many applications. With the advances of deep-learning methods, computational approaches for predicting molecular properties are gaining increasing momentum. However, there lacks customized and advanced methods and comprehensive tools for this task currently.
Results Here, we develop a suite of comprehensive machine-learning methods and tools spanning different computational models, molecular representations and loss functions for molecular property prediction and drug discovery. Specifically, we represent molecules as both graphs and sequences. Built on these representations, we develop novel deep models for learning from molecular graphs and sequences. In order to learn effectively from highly imbalanced datasets, we develop advanced loss functions that optimize areas under precision–recall curves (PRCs) and receiver operating characteristic (ROC) curves. Altogether, our work not only serves as a comprehensive tool, but also contributes toward developing novel and advanced graph and sequence-learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that our methods achieve consistent improvements over prior methods. In particular, our methods achieve #1 ranking in terms of both ROC-AUC (area under curve) and PRC-AUC on the AI Cures open challenge for drug discovery related to COVID-19.
Availabilitymore » Our source code is released as part of the MoleculeX library (https://github.com/divelab/MoleculeX) under AdvProp.
Supplementary information Supplementary data are available at Bioinformatics online.