skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Gos: a declarative library for interactive genomics visualization in Python
Abstract Summary

Gos is a declarative Python library designed to create interactive multiscale visualizations of genomics and epigenomics data. It provides a consistent and simple interface to the flexible Gosling visualization grammar. Gos hides technical complexities involved with configuring web-based genome browsers and integrates seamlessly within computational notebooks environments to enable new interactive analysis workflows.

Availability and implementation

Gos is released under the MIT License and available on the Python Package Index (PyPI). The source code is publicly available on GitHub (https://github.com/gosling-lang/gos), and documentation with examples can be found at https://gosling-lang.github.io/gos.

 
more » « less
NSF-PAR ID:
10394808
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
39
Issue:
1
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marschall, Tobias (Ed.)
    Abstract Motivation

    JBrowse Jupyter is a package that aims to close the gap between Python programming and genomic visualization. Web-based genome browsers are routinely used for publishing and inspecting genome annotations. Historically they have been deployed at the end of bioinformatics pipelines, typically decoupled from the analysis itself. However, emerging technologies such as Jupyter notebooks enable a more rapid iterative cycle of development, analysis and visualization.

    Results

    We have developed a package that provides a Python interface to JBrowse 2’s suite of embeddable components, including the primary Linear Genome View. The package enables users to quickly set up, launch and customize JBrowse views from Jupyter notebooks. In addition, users can share their data via Google’s Colab notebooks, providing reproducible interactive views.

    Availability and implementation

    JBrowse Jupyter is released under the Apache License and is available for download on PyPI. Source code and demos are available on GitHub at https://github.com/GMOD/jbrowse-jupyter.

     
    more » « less
  2. Abstract Summary

    dadi is a popular software package for inferring models of demographic history and natural selection from population genomic data. But using dadi requires Python scripting and manual parallelization of optimization jobs. We developed dadi-cli to simplify dadi usage and also enable straighforward distributed computing.

    Availability and Implementation

    dadi-cli is implemented in Python and released under the Apache License 2.0. The source code is available athttps://github.com/xin-huang/dadi-cli. dadi-cli can be installed via PyPI and conda, and is also available through Cacao on Jetstream2https://cacao.jetstream-cloud.org/.

     
    more » « less
  3. Abstract Summary

    ipyrad is a free and open source tool for assembling and analyzing restriction site-associated DNA sequence datasets using de novo and/or reference-based approaches. It is designed to be massively scalable to hundreds of taxa and thousands of samples, and can be efficiently parallelized on high performance computing clusters. It is available both as a command line interface and as a Python package with an application programming interface, the latter of which can be used interactively to write complex, reproducible scripts and implement a suite of downstream analysis tools.

    Availability and implementation

    ipyrad is a free and open source program written in Python. Source code is available from the GitHub repository (https://github.com/dereneaton/ipyrad/), and Linux and MacOS installs are distributed through the conda package manager. Complete documentation, including numerous tutorials, and Jupyter notebooks demonstrating example assemblies and applications of downstream analysis tools are available online: https://ipyrad.readthedocs.io/.

     
    more » « less
  4. Fiston-Lavier, Anna-Sophie (Ed.)
    Abstract Summary

    Understanding the pathways and biological processes underlying differential gene expression is fundamental for characterizing gene expression changes in response to an experimental condition. Zebrafish, with a transcriptome closely mirroring that of humans, are frequently utilized as a model for human development and disease. However, a challenge arises due to the incomplete annotations of zebrafish pathways and biological processes, with more comprehensive annotations existing in humans. This incompleteness may result in biased functional enrichment findings and loss of knowledge. danRerLib, a versatile Python package for zebrafish transcriptomics researchers, overcomes this challenge and provides a suite of tools to be executed in Python including gene ID mapping, orthology mapping for the zebrafish and human taxonomy, and functional enrichment analysis utilizing the latest updated Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. danRerLib enables functional enrichment analysis for GO and KEGG pathways, even when they lack direct zebrafish annotations through the orthology of human-annotated functional annotations. This approach enables researchers to extend their analysis to a wider range of pathways, elucidating additional mechanisms of interest and greater insight into experimental results.

    Availability and implementation

    danRerLib, along with comprehensive documentation and tutorials, is freely available. The source code is available at https://github.com/sdsucomptox/danrerlib/ with associated documentation and tutorials at https://sdsucomptox.github.io/danrerlib/. The package has been developed with Python 3.9 and is available for installation on the package management systems PIP (https://pypi.org/project/danrerlib/) and Conda (https://anaconda.org/sdsu_comptox/danrerlib) with additional installation instructions on the documentation website.

     
    more » « less
  5. Abstract Summary

    PlasCAT (Plasmid Cloud Assembly Tool) is an easy-to-use cloud-based bioinformatics tool that enables de novo plasmid sequence assembly from raw sequencing data. Nontechnical users can now assemble sequences from long reads and short reads without ever touching a line of code. PlasCAT uses high-performance computing servers to reduce run times on assemblies and deliver results faster.

    Availability and implementation

    PlasCAT is freely available on the web at https://sequencing.genofab.com. The assembly pipeline source code and server code are available for download at https://bitbucket.org/genofabinc/workspace/projects/PLASCAT. Click the Cancel button to access the source code without authenticating. Web servers implemented in React.js and Python, with all major browsers supported.

     
    more » « less