skip to main content


Title: Gracob: a novel graph-based constant-column biclustering method for mining growth phenotype data
Abstract Motivation

Growth phenotype profiling of genome-wide gene-deletion strains over stress conditions can offer a clear picture that the essentiality of genes depends on environmental conditions. Systematically identifying groups of genes from such high-throughput data that share similar patterns of conditional essentiality and dispensability under various environmental conditions can elucidate how genetic interactions of the growth phenotype are regulated in response to the environment.

Results

We first demonstrate that detecting such ‘co-fit’ gene groups can be cast as a less well-studied problem in biclustering, i.e. constant-column biclustering. Despite significant advances in biclustering techniques, very few were designed for mining in growth phenotype data. Here, we propose Gracob, a novel, efficient graph-based method that casts and solves the constant-column biclustering problem as a maximal clique finding problem in a multipartite graph. We compared Gracob with a large collection of widely used biclustering methods that cover different types of algorithms designed to detect different types of biclusters. Gracob showed superior performance on finding co-fit genes over all the existing methods on both a variety of synthetic data sets with a wide range of settings, and three real growth phenotype datasets for E. coli, proteobacteria and yeast.

Availability and Implementation

Our program is freely available for download at http://sfb.kaust.edu.sa/Pages/Software.aspx.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10394827
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
33
Issue:
16
ISSN:
1367-4803
Page Range / eLocation ID:
p. 2523-2531
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells is informative for both cancer research and the development of targeted drugs. The established experimental and computational methods are labor-intensive. To make algorithms feasible in real clinical settings, methods that can predict driver genes using less experimental data are urgently needed.

    Results

    We designed an effective feature selection method and used Support Vector Machines (SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality Prediction Challenge. We also found a set of genes whose essentiality could be predicted much more accurately than others, which we called Accurately Predicted (AP) genes. Our method can serve as a new way of assessing the essentiality of genes in cancer cells.

    Availability and implementation

    The raw data that support the findings of this study are available at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    There is recent interest in using gene expression data to contextualize findings from traditional genome-wide association studies (GWAS). Conditioned on a tissue, expression quantitative trait loci (eQTLs) are genetic variants associated with gene expression, and eGenes are genes whose expression levels are associated with genetic variants. eQTLs and eGenes provide great supporting evidence for GWAS hits and important insights into the regulatory pathways involved in many diseases. When a significant variant or a candidate gene identified by GWAS is also an eQTL or eGene, there is strong evidence to further study this variant or gene. Multi-tissue gene expression datasets like the Gene Tissue Expression (GTEx) data are used to find eQTLs and eGenes. Unfortunately, these datasets often have small sample sizes in some tissues. For this reason, there have been many meta-analysis methods designed to combine gene expression data across many tissues to increase power for finding eQTLs and eGenes. However, these existing techniques are not scalable to datasets containing many tissues, like the GTEx data. Furthermore, these methods ignore a biological insight that the same variant may be associated with the same gene across similar tissues.

    Results

    We introduce a meta-analysis model that addresses these problems in existing methods. We focus on the problem of finding eGenes in gene expression data from many tissues, and show that our model is better than other types of meta-analyses.

    Availability and Implementation

    Source code is at https://github.com/datduong/RECOV.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Metagenomic and metatranscriptomic analyses can provide an abundance of information related to microbial communities. However, straightforward analysis of this data does not provide optimal results, with a required integration of data types being needed to thoroughly investigate these microbiomes and their environmental interactions.

    Results

    Here, we present MetaQUBIC, an integrated biclustering-based computational pipeline for gene module detection that integrates both metagenomic and metatranscriptomic data. Additionally, we used this pipeline to investigate 735 paired DNA and RNA human gut microbiome samples, resulting in a comprehensive hybrid gene expression matrix of 2.3 million cross-species genes in the 735 human fecal samples and 155 functional enriched gene modules. We believe both the MetaQUBIC pipeline and the generated comprehensive human gut hybrid expression matrix will facilitate further investigations into multiple levels of microbiome studies.

    Availability and implementation

    The package is freely available at https://github.com/OSU-BMBL/metaqubic.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Background

    Developing appropriate computational tools to distill biological insights from large‐scale gene expression data has been an important part of systems biology. Considering that gene relationships may change or only exist in a subset of collected samples, biclustering that involves clustering both genes and samples has become in‐creasingly important, especially when the samples are pooled from a wide range of experimental conditions.

    Methods

    In this paper, we introduce a new biclustering algorithm to find subsets of genomic expression features (EFs) (e.g., genes, isoforms, exon inclusion) that show strong “group interactions” under certain subsets of samples. Group interactions are defined by strong partial correlations, or equivalently, conditional dependencies between EFs after removing the influences of a set of other functionally related EFs. Our new biclustering method, named SCCA‐BC, extends an existing method for group interaction inference, which is based on sparse canonical correlation analysis (SCCA) coupled with repeated random partitioning of the gene expression data set.

    Results

    SCCA‐BC gives sensible results on real data sets and outperforms most existing methods in simulations. Software is available athttps://github.com/pimentel/scca‐bc.

    Conclusions

    SCCA‐BC seems to work in numerous conditions and the results seem promising for future extensions. SCCA‐BC has the ability to find different types of bicluster patterns, and it is especially advantageous in identifying a bicluster whose elements share the same progressive and multivariate normal distribution with a dense covariance matrix.

     
    more » « less
  5. Cowen, Lenore (Ed.)
    Abstract Motivation Biclustering has emerged as a powerful approach to identifying functional patterns in complex biological data. However, existing tools are limited by their accuracy and efficiency to recognize various kinds of complex biclusters submerged in ever large datasets. We introduce a novel fast and highly accurate algorithm RecBic to identify various forms of complex biclusters in gene expression datasets. Results We designed RecBic to identify various trend-preserving biclusters, particularly, those with narrow shapes, i.e. clusters where the number of genes is larger than the number of conditions/samples. Given a gene expression matrix, RecBic starts with a column seed, and grows it into a full-sized bicluster by simply repetitively comparing real numbers. When tested on simulated datasets in which the elements of implanted trend-preserving biclusters and those of the background matrix have the same distribution, RecBic was able to identify the implanted biclusters in a nearly perfect manner, outperforming all the compared salient tools in terms of accuracy and robustness to noise and overlaps between the clusters. Moreover, RecBic also showed superiority in identifying functionally related genes in real gene expression datasets. Availability and implementation Code, sample input data and usage instructions are available at the following websites. Code: https://github.com/holyzews/RecBic/tree/master/RecBic/. Data: http://doi.org/10.5281/zenodo.3842717. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less