The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.
Secure confirmation that a gravitational wave (GW) has been gravitationally lensed would bring together these two pillars of General Relativity for the first time. This breakthrough is challenging for many reasons, including: GW sky localization uncertainties dwarf the angular scale of gravitational lensing, the mass and structure of gravitational lenses is diverse, the mass function of stellar remnant compact objects is not yet well constrained, and GW detectors do not operate continuously. We introduce a new approach that is agnostic to the mass and structure of the lenses, compare the efficiency of different methods for lensed GW discovery, and explore detection of lensed kilonova counterparts as a direct method for localizing candidates. Our main conclusions are: (1) lensed neutron star mergers (NS–NS) are magnified into the ‘mass gap’ between NS and black holes, therefore selecting candidates from public GW alerts with high mass gap probability is efficient, (2) the rate of detectable lensed NS–NS will approach one per year in the mid-2020s, (3) the arrival time difference between lensed NS–NS images is $1\, \rm s\lesssim \Delta \mathit{ t}\lesssim 1\, yr$, and thus well-matched to the operations of GW detectors and optical telescopes, (4) lensed kilonova counterparts are faint at more »
- Publication Date:
- NSF-PAR ID:
- 10394839
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 520
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 702-721
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Strong gravitational lensing of gravitational wave sources offers a novel probe of both the lens galaxy and the binary source population. In particular, the strong lensing event rate and the time-delay distribution of multiply imaged gravitational-wave binary coalescence events can be used to constrain the mass distribution of the lenses as well as the intrinsic properties of the source population. We calculate the strong lensing event rate for a range of second- (2G) and third-generation (3G) detectors, including Advanced LIGO/Virgo, A+, Einstein Telescope (ET), and Cosmic Explorer (CE). For 3G detectors, we find that ∼0.1% of observed events are expected to be strongly lensed. We predict detections of ∼1 lensing pair per year with A+, and ∼50 pairs per year with ET/CE. These rates are highly sensitive to the characteristic galaxy velocity dispersion, σ * , implying that observations of the rates will be a sensitive probe of lens properties. We explore using the time-delay distribution between multiply imaged gravitational-wave sources to constrain properties of the lenses. We find that 3G detectors would constrain σ * to ∼21% after 5 yr. Finally, we show that the presence or absence of strong lensing within the detected population provides useful insightsmore »
-
ABSTRACT GW190425 was the second gravitational wave (GW) signal compatible with a binary neutron star (BNS) merger detected by the Advanced LIGO and Advanced Virgo detectors. Since no electromagnetic counterpart was identified, whether the associated kilonova was too dim or the localization area too broad is still an open question. We simulate 28 BNS mergers with the chirp mass of GW190425 and mass ratio 1 ≤ q ≤ 1.67, using numerical-relativity simulations with finite-temperature, composition dependent equations of state (EOS) and neutrino radiation. The energy emitted in GWs is $\lesssim 0.083\mathrm{\, M_\odot }c^2$ with peak luminosity of 1.1–$2.4\times ~10^{58}/(1+q)^2\, {\rm {erg \, s^{-1}}}$. Dynamical ejecta and disc mass range between 5 × 10−6–10−3 and 10−5–$0.1 \mathrm{\, M_\odot }$, respectively. Asymmetric mergers, especially with stiff EOSs, unbind more matter and form heavier discs compared to equal mass binaries. The angular momentum of the disc is 8–$10\mathrm{\, M_\odot }~GM_{\rm {disc}}/c$ over three orders of magnitude in Mdisc. While the nucleosynthesis shows no peculiarity, the simulated kilonovae are relatively dim compared with GW170817. For distances compatible with GW190425, AB magnitudes are always dimmer than ∼20 mag for the B, r, and K bands, with brighter kilonovae associated to more asymmetric binaries and stiffer EOSs. We suggest that,more »
-
ABSTRACT GRANDMA (Global Rapid Advanced Network Devoted to the Multi-messenger Addicts) is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave (GW) candidate alerts, especially those with large localization uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMA’s observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between GW candidate trigger time, observations, and the total coverage. Using an optimized and robust coordination system, GRANDMA followed-up about 90 per cent of the GW candidate alerts, that is 49 out of 56 candidates. This led to coverage of over 9000 deg2 during O3. The delay between the GW candidate trigger and the first observation was below 1.5 h for 50 per cent of the alerts. We did not detect any electromagnetic counterparts to the GW candidates during O3, likely due to the very large localization areas (on average thousands of degrees squares) and relatively large distance of the candidatesmore »
-
ABSTRACT Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$ is the scaled dimensionless velocity dispersion. Future measurements of timemore »