skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: On the evolution of mimicry in avian nestlings
Abstract

Batesian mimicry (BM), where a nontoxic species resembles a toxic species with aposematic coloring, has been recently described for a Neotropical species of the suboscine passerine (Laniocera hypopyrra). Understanding the order and series in which these characteristics evolved is unknown and requires character information from closely related taxa. Here, we trace the origin of mimetic traits and how they evolved by examining antipredator characteristics using images and other field‐collected trait data from nest and nestlings along with data available in the literature for the Laniisominae clade and closely related taxa. We found that morphological modifications of the downy feathers appeared first in the broader clade leading to the Laniisominae clade followed by further morphological and behavioral characteristics within the Laniisominae clade leading to the full BM. Images of nestlings in the Laniisominae and closely related clades demonstrated the extent of antipredator and camouflage characteristics. We found a complex set of behavioral and morphological traits in this clade for reducing predation from hiding to camouflage to mimicry. We further propose the evolution of two distinctive mimicry strategies in the Laniisominae clade: (1) Batesian Mimicry, as described above and (2) Masquerade, resemblance to inedible objects commonly found in their local environment. This complex set of antipredator traits shed light on the diversity of antipredator characteristics in avian nestlings, particularly in neotropical areas where the avian diversity is highest. Unfortunately, there are hundreds of species in the neotropics that lack basic natural history information on nesting traits, and therefore, we are likely missing critical information on the diversity of antipredator characteristics across avian nestlings.

 
more » « less
NSF-PAR ID:
10394885
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
4
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Antipredator defensive traits are thought to trade‐off evolutionarily with traits that facilitate predator avoidance. However, complexity and scale have precluded tests of this prediction in many groups, including fishes. Using a macroevolutionary approach, we test this prediction in butterflyfishes, an iconic group of coral reef inhabitants with diverse social behaviours, foraging strategies and antipredator adaptations. We find that several antipredator traits have evolved adaptively, dependent primarily on foraging strategy. We identify a previously unrecognised axis of diversity in butterflyfishes where species with robust morphological defences have riskier foraging strategies and lack sociality, while species with reduced morphological defences feed in familiar territories, have adaptations for quick escapes and benefit from the vigilance provided by sociality. Furthermore, we find evidence for the constrained evolution of fin spines among species that graze solely on corals, highlighting the importance of corals, as both prey and structural refuge, in shaping fish morphology.

     
    more » « less
  2. Abstract

    Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.

     
    more » « less
  3. Abstract

    Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood‐parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown‐headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red‐winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT‐treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin‐releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT‐treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood‐parasitic behavior.

     
    more » « less
  4. Abstract

    The reproductive success of birds is closely tied to the characteristics of their nests. It is crucial to understand the distribution of nest traits across phylogenetic and geographic dimensions to gain insight into bird evolution and adaptation. Despite the extensive historical documentation on breeding behavior, a structured dataset describing bird nest characteristics has been lacking. To address this gap, we have compiled a comprehensive dataset that characterizes three ecologically and evolutionarily significant nest traits—site, structure, and attachment—for 9,248 bird species, representing all 36 orders and 241 out of the 244 families. By defining seven sites, seven structures, and four attachment types, we have systematically classified the nests of each species using information from text descriptions, photos, and videos sourced from online databases and literature. This nest traits dataset serves as a valuable addition to the existing body of morphological and ecological trait data for bird species, providing a useful resource for a wide range of avian macroecological and macroevolutionary research.

     
    more » « less
  5. Abstract

    Host‐associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.

     
    more » « less