- Award ID(s):
- 1730449
- NSF-PAR ID:
- 10394898
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- POPL
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 921 to 951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present metalanguages for developing synthetic cost-aware denotational semantics of programming languages. Extending recent advances by Niu et al. in cost and behavioral verification in dependent type theory, we define two successively more expressive metalanguages for studying cost-aware metatheory. We construct synthetic denotational models of the simply-typed lambda calculus and Modernized Algol, a language with first-order store and while loops, and show that they satisfy a cost-aware generalization of the classic Plotkin-type computational adequacy theorem. Moreover, by developing our proofs in a synthetic language of phase-separated constructions of intension and extension, our results easily restrict to the corresponding extensional theorems. Consequently, our work provides a positive answer to the conjecture raised in op. cit. and contributes a framework for cost-aware programming, verification, and metatheory.more » « less
-
When novice programming students already know one programming language and have to learn another, what issues do they run into? We specifically focus on one or both languages being functional, varying along two axes: syntax and semantics. We report on problems, especially persistent ones. This work can be of immediate value to educators and also sets up avenues for future research.more » « less
-
In support of the growing interest in quantum computing experimentation, programmers need new tools to write quantum algorithms as program code. Compared to debugging classical programs, debugging quantum programs is difficult because programmers have limited ability to probe the internal states of quantum programs; those states are difficult to interpret even when observations exist; and programmers do not yet have guidelines for what to check for when building quantum programs. In this work, we present quantum program assertions based on statistical tests on classical observations. These allow programmers to decide if a quantum program state matches its expected value in one of classical, superposition, or entangled types of states. We extend an existing quantum programming language with the ability to specify quantum assertions, which our tool then checks in a quantum program simulator. We use these assertions to debug three benchmark quantum programs in factoring, search, and chemistry. We share what types of bugs are possible, and lay out a strategy for using quantum programming patterns to place assertions and prevent bugs.more » « less
-
The emergence of variational quantum applications has led to the development of automatic differentiation techniques in quantum computing. Existing work has formulated differentiable quantum programming with bounded loops, providing a framework for scalable gradient calculation by quantum means for training quantum variational applications. However, promising parameterized quantum applications, e.g., quantum walk and unitary implementation, cannot be trained in the existing framework due to the natural involvement of unbounded loops. To fill in the gap, we provide the first differentiable quantum programming framework with unbounded loops, including a newly designed differentiation rule, code transformation, and their correctness proof. Technically, we introduce a randomized estimator for derivatives to deal with the infinite sum in the differentiation of unbounded loops, whose applicability in classical and probabilistic programming is also discussed. We implement our framework with Python and Q# and demonstrate a reasonable sample efficiency. Through extensive case studies, we showcase an exciting application of our framework in automatically identifying close-to-optimal parameters for several parameterized quantum applications.
-
Quantum Hamiltonian simulation, which simulates the evolution of quantum systems and probes quantum phenomena, is one of the most promising applications of quantum computing. Recent experimental results suggest that Hamiltonian-oriented analog quantum simulation would be advantageous over circuit-oriented digital quantum simulation in the Noisy Intermediate-Scale Quantum (NISQ) machine era. However, programming analog quantum simulators is much more challenging due to the lack of a unified interface between hardware and software. In this paper, we design and implement SimuQ, the first framework for quantum Hamiltonian simulation that supports Hamiltonian programming and pulse-level compilation to heterogeneous analog quantum simulators. Specifically, in SimuQ, front-end users specify the target quantum system with Hamiltonian Modeling Language, and the Hamiltonian-level programmability of analog quantum simulators is specified through a new abstraction called the abstract analog instruction set (AAIS) and programmed in AAIS Specification Language by hardware providers. Through a solver-based compilation, SimuQ generates executable pulse schedules for real devices to simulate the evolution of desired quantum systems, which is demonstrated on superconducting (IBM), neutral-atom (QuEra), and trapped-ion (IonQ) quantum devices. Moreover, we demonstrate the advantages of exposing the Hamiltonian-level programmability of devices with native operations or interaction-based gates and establish a small benchmark of quantum simulation to evaluate SimuQ's compiler with the above analog quantum simulators.