skip to main content


Title: Progress and challenges in the development of ultra-wide bandgap semiconductor α-Ga2O3 toward realizing power device applications

Ultra-wide-bandgap (UWBG) semiconductors, such as Ga2O3 and diamond, have been attracting increasing attention owing to their potential to realize high-performance power devices with high breakdown voltage and low on-resistance beyond those of SiC and GaN. Among numerous UWBG semiconductors, this work focuses on the corundum-structured α-Ga2O3, which is a metastable polymorph of Ga2O3. The large bandgap energy of 5.3 eV, a large degree of freedom in band engineering, and availability of isomorphic p-type oxides to form a hetero p–n junction make α-Ga2O3 an attractive candidate for power device applications. Promising preliminary prototype device structures have been demonstrated without advanced edge termination despite the high dislocation density in the epilayers owing to the absence of native substrates and lattice-matched foreign substrates. In this Perspective, we present an overview of the research and development of α-Ga2O3 for power device applications and discuss future research directions.

 
more » « less
Award ID(s):
2043803
NSF-PAR ID:
10440376
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
26
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edge termination is the enabling building block of power devices to exploit the high breakdown field of wide bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors. This work presents a heterogeneous junction termination extension (JTE) based on p-type nickel oxide (NiO) for gallium oxide (Ga2O3) devices. Distinct from prior JTEs usually made by implantation or etch, this NiO JTE is deposited on the surface of Ga2O3 by magnetron sputtering. The JTE consists of multiple NiO layers with various lengths to allow for a graded decrease in effective charge density away from the device active region. Moreover, this surface JTE has broad design window and process latitude, and its efficiency is drift-layer agnostic. The physics of this NiO JTE is validated by experimental applications into NiO/Ga2O3 p–n diodes fabricated on two Ga2O3 wafers with different doping concentrations. The JTE enables a breakdown voltage over 3.2 kV and a consistent parallel-plate junction field of 4.2 MV/cm in both devices, rendering a power figure of merit of 2.5–2.7 GW/cm2. These results show the great promise of the deposited JTE as a flexible, near ideal edge termination for WBG and UWBG devices, particularly those lacking high-quality homojunctions. 
    more » « less
  2. β-phase gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconductor with a bandgap energy of ∼ 4.8 eV and a predicted high critical electric field strength of ∼8 MV/cm, enabling promising applications in next generation high power electronics and deep ultraviolet optoelectronics. The advantages of Ga2O3 also stem from its availability of single crystal bulk native substrates synthesized from melt, and its well-controllable n-type doping from both bulk growth and thin film epitaxy. Among several thin film growth methods, metalorganic chemical vapor deposition (MOCVD) has been demonstrated as an enabling technology for developing high-quality epitaxy of Ga2O3 thin films, (AlxGa1−x)2O3 alloys, and heterostructures along various crystal orientations and with different phases. This tutorial summarizes the recent progresses in the epitaxial growth of β-Ga2O3 thin films via different growth methods, with a focus on the growth of Ga2O3 and its compositional alloys by MOCVD. The challenges for the epitaxial development of β-Ga2O3 are discussed, along with the opportunities of future works to enhance the state-of-the-art device performance based on this emerging UWBG semiconductor material system. 
    more » « less
  3. Abstract

    Power semiconductor devices are fundamental drivers for advances in power electronics, the technology for electric energy conversion. Power devices based on wide-bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors allow for a smaller chip size, lower loss and higher frequency compared with their silicon (Si) counterparts, thus enabling a higher system efficiency and smaller form factor. Amongst the challenges for the development and deployment of WBG and UWBG devices is the efficient dissipation of heat, an unavoidable by-product of the higher power density. To mitigate the performance limitations and reliability issues caused by self-heating, thermal management is required at both device and package levels. Packaging in particular is a crucial milestone for the development of any power device technology; WBG and UWBG devices have both reached this milestone recently. This paper provides a timely review of the thermal management of WBG and UWBG power devices with an emphasis on packaged devices. Additionally, emerging UWBG devices hold good promise for high-temperature applications due to their low intrinsic carrier density and increased dopant ionization at elevated temperatures. The fulfillment of this promise in system applications, in conjunction with overcoming the thermal limitations of some UWBG materials, requires new thermal management and packaging technologies. To this end, we provide perspectives on the relevant challenges, potential solutions and research opportunities, highlighting the pressing needs for device–package electrothermal co-design and high-temperature packages that can withstand the high electric fields expected in UWBG devices.

     
    more » « less
  4. There is increasing interest in α-polytype Ga2O3 for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO4 deposited by atomic layer deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO4/Ga2O3 heterointerface was measured using x-ray photoelectron spectroscopy. The single-crystal α-Ga2O3 was grown by halide vapor phase epitaxy on sapphire substrates. The valence band offset was 0.82 ± 0.20 eV (staggered gap, type-II alignment) for ALD HfSiO4 on α-Ga0.2O3. The corresponding conduction band offset was −2.72 ± 0.45 eV, providing no barrier to electrons moving into Ga2O3.

     
    more » « less
  5. Abstract

    The discovery and development of ultra-wide bandgap (UWBG) semiconductors is crucial to accelerate the adoption of renewable power sources. This necessitates an UWBG semiconductor that exhibits robust doping with high carrier mobility over a wide range of carrier concentrations. Here we demonstrate that epitaxial thin films of the perovskite oxide NdxSr1xSnO3(SSO) do exactly this. Nd is used as a donor to successfully modulate the carrier concentration over nearly two orders of magnitude, from 3.7 × 1018 cm−3to 2.0 × 1020 cm−3. Despite being grown on lattice-mismatched substrates and thus having relatively high structural disorder, SSO films exhibited the highest room-temperature mobility, ~70 cm2 V−1 s−1, among all known UWBG semiconductors in the range of carrier concentrations studied. The phonon-limited mobility is calculated from first principles and supplemented with a model to treat ionized impurity and Kondo scattering. This produces excellent agreement with experiment over a wide range of temperatures and carrier concentrations, and predicts the room-temperature phonon-limited mobility to be 76–99 cm2 V−1 s−1depending on carrier concentration. This work establishes a perovskite oxide as an emerging UWBG semiconductor candidate with potential for applications in power electronics.

     
    more » « less