Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals. 
                        more » 
                        « less   
                    
                            
                            Thermal Stability of Quasi-1D NbS 3 Nanoribbons and Their Transformation to 2D NbS 2 : Insights from in Situ Electron Microscopy and Spectroscopy
                        
                    - Award ID(s):
- 1919942
- PAR ID:
- 10394924
- Date Published:
- Journal Name:
- Chemistry of Materials
- Volume:
- 34
- Issue:
- 1
- ISSN:
- 0897-4756
- Page Range / eLocation ID:
- 279 to 287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Alloying selected layered transitional metal trichalcogenides (TMTCs) with unique chain‐like structures offers the opportunities for structural, optical, and electrical engineering thus expands the regime of this class of pseudo‐one‐dimensional materials. Here, the novel phase transition in anisotropic Nb(1−x)TixS3alloys is demonstrated for the first time. Results show that Nb(1−x)TixS3can be fully alloyed across the entire composition range from triclinic‐phase NbS3to monoclinic‐phase TiS3. Surprisingly, incorporation of a small concentration of Ti (x ≈0.05–0.18) into NbS3host matrix is sufficient to induce triclinic to monoclinic transition. Theoretical studies suggest that Ti atoms effectively introduce hole doping, thus rapidly decreases the total energy of monoclinic phase and induces the phase transition. When alloyed, crystalline and optical anisotropy are largely preserved as evidenced by high resolution transmission electron microscopy and angle‐resolved Raman spectroscopy. Further Raman measurements identify Raman modes to determine crystalline anisotropy direction and offer insights into the degree of anisotropy. Overall results introduce Nb(1−x)TixS3as a new and easy phase change material and mark the first phase engineering in anisotropic van der Waals (vdW) trichalcogenide systems for their potential applications in two‐dimensional superconductivity, electronics, photonics, and information technologies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    