skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photon-Pair Generation in a CMOS Microring: Impact of Spontaneous Raman Scattering and Its Mitigation
We study spontaneous four-wave mixing and spontaneous Raman scattering (SpRS) in a CMOS microring cavity in the C-band and find that the latter contributes a significant fraction to the signal/idler photon flux. We expect operation in the O-band to be less affected by SpRS due to higher confinement of the O-band light in crystalline Si in this device.  more » « less
Award ID(s):
1842692
PAR ID:
10394935
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Optics + Laser Science 2022 (FIO, LS)
Page Range / eLocation ID:
FTu6B.2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate photon counting requires that rods generate highly amplified, reproducible single photon responses (SPRs). The SPR is generated within the rod outer segment (ROS), a multilayered structure built from membranous disks that house rhodopsin. Photoisomerization of rhodopsin at the disk rim causes a local depletion of cGMP that closes ion channels in the plasmalemma located nearby with relative rapidity. In contrast, a photoisomerization at the disk center, distant from the plasmalemma, has a delayed impact on the ion channels due to the time required for cGMP redistribution. Radial differences should be greatest in large diameter rods. By affecting membrane guanylate cyclase activity, bicarbonate could impact spatial inhomogeneity in cGMP content. It was previously known that in the absence of bicarbonate, SPRs are larger and faster at the base of a toad ROS (where the ROS attaches to the rest of the cell) than at the distal tip. Given that bicarbonate enters the ROS at the base and diffuses to the tip and that it expedites flash response recovery, there should be an axial concentration gradient for bicarbonate that would accentuate the base-to-tip SPR differences. Seeking to understand how ROS geometry and bicarbonate affect SPR variability, we used mathematical modeling and made electrophysiological recordings of single rods. Modeling predicted and our experiments confirmed minor radial SPR variability in large diameter, salamander rods that was essentially unchanged by bicarbonate. SPRs elicited at the base and tip of salamander rods were similar in the absence of bicarbonate, but when treated with 30 mM bicarbonate, SPRs at the base became slightly faster than those at the tip, verifying the existence of an axial gradient for bicarbonate. The differences were small and unlikely to undermine visual signaling. However, in toad rods with longer ROSs, bicarbonate somehow suppressed the substantial, axial SPR variability that is naturally present in the absence of bicarbonate. Modeling suggested that the axial gradient of bicarbonate might dampen the primary phototransduction cascade at the base of the ROS. This novel effect of bicarbonate solves a mystery as to how toad vision is able to function effectively in extremely dim light. 
    more » « less
  2. Dense assemblies of self-propelling rods (SPRs) may exhibit fascinating collective behaviors and anomalous physical properties that are far away from equilibrium. Using large-scale Brownian dynamics simulations, we investigate the dynamics of disclination defects in 2D fluidized swarming motions of dense dry SPRs ( i.e. , without hydrodynamic effects) that form notable local positional topological structures that are reminiscent of smectic order. We find the deformations of smectic-like rod layers can create unique polar structures that lead to slow translations and rotations of ±1/2-order defects, which are fundamentally different from the fast streaming defect motions observed in wet active matter. We measure and characterize the statistical properties of topological defects and reveal their connections with the coherent structures. Furthermore, we construct a bottom-up active-liquid-crystal model to analyze the instability of polar lanes, which effectively leads to defect formation between interlocked polar lanes and serves as the origin of the large-scale swarming motions. 
    more » « less
  3. Background: Software Package Registries (SPRs) are an integral part of the software supply chain. These collaborative platforms unite contributors, users, and packages, and they streamline pack- age management. Much engineering work focuses on synthesizing packages from SPRs into a downstream project. Prior work has thoroughly characterized the SPRs associated with traditional soft- ware, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: A growing body of empirical research has examined PTM reg- istries from various angles, such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Furthermore, much of the existing research includes unsupported qualitative claims and lacks sufficient quantitative analysis. Our research aims to fill these gaps by providing a thorough knowledge synthesis and use it to inform further quantitative analysis. Methods: To consolidate existing knowledge on PTM reuse, we first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative and lack quantitative evi- dence. We identify quantifiable metrics assoiated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our two most notable findings are: (1) PTMs have a significantly higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: Our findings validate several qual- itative research claims with concrete metrics, confirming prior qualitative and case study research. Our measures show further dynamics of PTM reuse, motivating further research infrastructure and new kinds of measurements. 
    more » « less
  4. Background: Software Package Registries (SPRs) are an integral part of the software supply chain. These collaborative platforms unite contributors, users, and packages, and they streamline pack- age management. Much engineering work focuses on synthesizing packages from SPRs into a downstream project. Prior work has thoroughly characterized the SPRs associated with traditional soft- ware, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: A growing body of empirical research has examined PTM registries from various angles, such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Furthermore, much of the existing research includes unsupported qualitative claims and lacks sufficient quantitative analysis. Our research aims to fill these gaps by providing a thorough knowledge synthesis and use it to inform further quantitative analysis. Methods: To consolidate existing knowledge on PTM reuse, we first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative and lack quantitative evidence. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our two most notable findings are: (1) PTMs have a significantly higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: Our findings validate several qual- stative research claims with concrete metrics, confirming prior qualitative and case study research. Our measures show further dynamics of PTM reuse, motivating further research infrastructure and new kinds of measurements. 
    more » « less
  5. Spontaneous Ge6O8cluster formation under ambient conditions using dispersion enhanced aryloxo ligands. 
    more » « less