skip to main content


Title: Fluorescence Modulation by Amines: Mechanistic Insights into Twisted Intramolecular Charge Transfer (TICT) and Beyond
Amine groups are common constituents of organic dyes and play important roles in tuning fluorescence properties. In particular, intensive research works have demonstrated the tendency and capabilities of amines in influencing chromophore brightness. Such properties have been explained by multiple mechanisms spanning from twisted intramolecular charge transfer (TICT) to the energy gap law and beyond, which introduce additional nonradiative energy dissipation pathways. In this review, we aim to provide a focused overview of the mechanistic insights mainly for the TICT mechanism, accompanied by a few other less common or influential fluorescence quenching mechanisms in the amine-containing fluorescent molecules. Various aspects of current scientific findings including the rational design and synthesis of organic chromophores, theoretical calculations, steady-state and time-resolved electronic and vibrational spectroscopies are reviewed. These in-depth understandings of how the amine groups with diverse chemical structures at various atomic sites affect excited-state nonradiative decay pathways will facilitate the strategic and targeted development of fluorophores with desired emission properties as versatile chemosensors for broad applications.  more » « less
Award ID(s):
2003550
NSF-PAR ID:
10394987
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemosensors
Volume:
11
Issue:
2
ISSN:
2227-9040
Page Range / eLocation ID:
87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Twisting intramolecular charge transfer (TICT) is a common nonradiative relaxation pathway for a molecule with a flexible substituent, effectively reducing the fluorescence quantum yield (FQY) by swift twisting motions. In this work, we investigate coumarin 481 (C481) that contains a diethylamino group in solution by femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and theoretical calculations, aided by coumarin 153 with conformational locking of the alkyl arms as a control sample. In different solvents with decreasing polarity, the transition energy barrier between the fluorescent state and TICT state increases, leading to an increase of the FQY. Correlating the fluorescence decay time constant with solvent polarity and viscosity parameters, the multivariable linear regression analysis indicates that the chromophore’s nonradiative relaxation pathway is affected by both hydrogen (H)-bond donating and accepting capabilities as well as dipolarity of the solvent. Results from the ground- and excited-state FSRS shed important light on structural dynamics of C481 undergoing prompt light-induced intramolecular charge transfer from the diethylamino group toward –C=O and –CF3 groups, while the excited-state C=O stretch marker band tracks initial solvation and vibrational cooling dynamics in aprotic and protic solvents (regardless of polarity) as well as H-bonding dynamics in the fluorescent state for C481 in high-polarity protic solvents like methanol. The uncovered mechanistic insights into the molecular origin for the fluorogenicity of C481 as an environment-polarity sensor substantiate the generality of ultrafast TICT state formation of flexible molecules in solution, and the site-dependent substituent(s) as an effective route to modulate the fluorescence properties for such compact, engineerable, and versatile chemosensors. 
    more » « less
  2. Abstract

    Interactions between light and matter serve as the basis of many technologies, but the quality of these devices is inherently limited by the optical properties of their constituents. Plasmonic nanoparticles are a highly versatile and tunable platform for the enhancement of such optical properties. However, the near‐field nature of these effects has made thorough study and understanding of these mechanisms difficult. In this work, we introduce a fully confocal technique combining photoswitching super‐resolution microscopy with fluorescence lifetime imaging microscopy to study single‐molecule decay rate enhancement. We demonstrate that the technique combines a spatial resolution better than 20 nm, and a 16 ps temporal resolution. Simultaneously, an autocorrelation measurement is also performed to confirm that the data indeed originates from single molecules. This work provides insight into the various mechanisms of plasmon‐enhanced emission, and allows the study of the correlation between emission intensity and lifetime enhancement. This complicated relationship is shown to be dependent upon the relative influence of various radiative and nonradiative decay pathways. Here, we provide a platform for further study of emission mislocalization, the position‐dependent prominence of different decay pathways, and the direct super‐resolved measurement of the local density of states.

     
    more » « less
  3. Ultraviolet radiation (UVR) from the sun is essential for the prebiotic syntheses of nucleotides, but it can also induce photolesions such as the cyclobutane pyrimidine dimers (CPDs) to RNA or DNA oligonucleotide in prebiotic Earth. 2,6-Diaminopurine (26DAP) has been proposed to repair CPDs in high yield under prebiotic conditions and be a key component in enhancing the photostability of higher-order prebiotic DNA structures. However, its electronic relaxation pathways have not been studied, which is necessary to know whether 26DAP could have survived the intense UV fluxes of the prebiotic Earth. We investigate the electronic relaxation mechanism of both 26DAP and its 2′-deoxyribonucleoside (26DAP-d) in aqueous solution using steady-state and femtosecond transient absorption measurements that are complemented with electronic-structure calculations. The results demonstrate that both purine derivatives are significantly photostable to UVR. It is shown that upon excitation at 287 nm, the lowest energy 1 ππ* state is initially populated. The population then branches following two relaxation coordinates in the 1 ππ* potential energy surface, which are identified as the C2- and C6-relaxation coordinates. The population following the C6-coordinate internally converts to the ground state nonradiatively through a nearly barrierless conical intersection within 0.7 ps in 26DAP or within 1.1 ps in 26DAP-d. The population that follows the C2-relaxation coordinate decays back to the ground state by a combination of nonradiative internal conversion via a conical intersection and fluorescence emission from the 1 ππ* minimum in 43 ps and 1.8 ns for the N9 and N7 tautomers of 26DAP, respectively, or in 70 ps for 26DAP-d. Fluorescence quantum yields of 0.037 and 0.008 are determined for 26DAP and 26DAP-d, respectively. Collectively, it is demonstrated that most of the excited state population in 26DAP and 26DAP-d decays back to the ground state via both nonradiative and radiative relaxation pathways. This result lends support to the idea that 26DAP could have accumulated in large enough quantities during the prebiotic era to participate in the formation of prebiotic RNA or DNA oligomers and act as a key component in the protection of the prebiotic genetic alphabet. 
    more » « less
  4. Abstract Anthocyanins, which are responsible for most of the red, blue and purple colors of fruits and flowers, are very efficient at absorbing and dissipating light energy via excited state proton transfer or charge-transfer mediated internal conversion without appreciable excited triplet state formation. During the maturation of red wines, grape anthocyanins are slowly transformed into pyranoanthocyanins, which have a much more chemically stable pyranoflavylium cation chromophore. Development of straightforward synthetic routes to mono- and disubstituted derivatives of the pyranoflavylium cation chromophore has stimulated theoretical and experimental studies that highlight the interesting absorption and emission properties and redox properties of pyranoflavylium cations. Thus, p-methoxyphenyl substitution enhances the fluorescence quantum yield, while a p-dimethylaminophenyl substituent results in fast decay via a twisted intramolecular charge-transfer (TICT) state. Unlike anthocyanins and their synthetic analogs (flavylium cations), a variety of pyranoflavylium cations form readily detectable excited triplet states that sensitize singlet oxygen formation in solution and exhibit appreciable two-photon absorption cross sections for near-infrared light, suggesting a potential for applications in photodynamic therapy. These excited triplet states have microsecond lifetimes in solution and excited state reduction potentials of at least 1.3 V vs. SCE, features that are clearly desirable in a triplet photoredox catalyst. 
    more » « less
  5. Two‐coordinate carbene Cu(Ι) amide complexes with sterically bulky groups such as the diisopropyl phenyl (dipp) on the carbenes have been shown to have comparable performance to the phosphorescent emitters bearing heavy atoms such as iridium and platinum. These bulky groups enforce a coplanar molecular structure and suppress the nonradiative decay rates. Here, three different two‐coordinate Cu(Ι) complexes were investigated that bear a common thiazole carbene, 3‐(2,6‐diisopropylphenyl)‐4,5‐dimethylthiazol‐2‐ylidene, with only a single dipp group, and carbazolyl ligands with substituents of varying steric bulkorthoto N. These substituents have a negligible impact on luminescence energies of the complexes but serve to modulate the rotation barriers along the metal–ligand coordinate bond. The geometric arrangement of ligands (syn‐ oranti‐conformer) in complexes with alkyl substituents were found to differ, beingsynin the solid state versusantiin solution as revealed by crystallographic analysis and nuclear magnetic resonance spectroscopy. In addition, calculations were performed to determine potential energy surfaces for different conformations of the three complexes to provide a theoretical evaluation of rotation barriers around the metal–ligand bond axis. The relationship between rotation barriers and photophysical properties demonstrate that rates for nonradiative decay decrease with increasing bulk of the substituents on the carbazolyl ligand.

     
    more » « less