skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Conversion of Classical Light Emission from a Nanoparticle‐Strained WSe 2 Monolayer into Quantum Light Emission via Electron Beam Irradiation

Solid‐state single photon emitters (SPEs) within atomically thin transition metal dichalcogenides (TMDs) have recently attracted interest as scalable quantum light sources for quantum photonic technologies. Among TMDs, WSe2monolayers (MLs) are promising for the deterministic fabrication and engineering of SPEs using local strain fields. The ability to reliably produce isolatable SPEs in WSe2is currently impeded by the presence of numerous spectrally overlapping states that occur at strained locations. Here nanoparticle (NP) arrays with precisely defined positions and sizes are employed to deterministically create strain fields in WSe2MLs, thus enabling the systematic investigation and control of SPE formation. Using this platform, electron beam irradiation at NP‐strained locations transforms spectrally overlapped sub‐bandgap emission states into isolatable, anti‐bunched quantum emitters. The dependence of the emission spectra of WSe2MLs as a function of strain magnitude and exposure time to electron beam irradiation is quantified and provides insight into the mechanism for SPE production. Excitons selectively funnel through strongly coupled sub‐bandgap states introduced by electron beam irradiation, which suppresses spectrally overlapping emission pathways and leads to measurable anti‐bunched behavior. The findings provide a strategy to generate isolatable SPEs in 2D materials with a well‐defined energy range.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.

    more » « less
  2. null (Ed.)
    Abstract In recent years, quantum-dot-like single-photon emitters in atomically thin van der Waals materials have become a promising platform for future on-chip scalable quantum light sources with unique advantages over existing technologies, notably the potential for site-specific engineering. However, the required cryogenic temperatures for the functionality of these sources has been an inhibitor of their full potential. Existing methods to create emitters in 2D materials face fundamental challenges in extending the working temperature while maintaining the emitter’s fabrication yield and purity. In this work, we demonstrate a method of creating site-controlled single-photon emitters in atomically thin WSe 2 with high yield utilizing independent and simultaneous strain engineering via nanoscale stressors and defect engineering via electron-beam irradiation. Many of the emitters exhibit biexciton cascaded emission, single-photon purities above 95%, and working temperatures up to 150 K. This methodology, coupled with possible plasmonic or optical micro-cavity integration, furthers the realization of scalable, room-temperature, and high-quality 2D single- and entangled-photon sources. 
    more » « less
  3. Color centers in wide bandgap semiconductors are attracting broad attention for use as platforms for quantum technologies relying on room-temperature single-photon emission (SPE), and for nanoscale metrology applications building on the centers’ response to electric and magnetic fields. Here, we demonstrate room-temperature SPE from defects in cubic boron nitride (cBN) nanocrystals, which we unambiguously assign to the cubic phase using spectrally resolved Raman imaging. These isolated spots show photoluminescence (PL) spectra with zero-phonon lines (ZPLs) within the visible region (496–700 nm) when subject to sub-bandgap laser excitation. Second-order autocorrelation of the emitted photons reveals antibunching withg2(0) ∼ 0.2, and a decay constant of 2.75 ns that is further confirmed through fluorescence lifetime measurements. The results presented herein prove the existence of optically addressable isolated quantum emitters originating from defects in cBN, making this material an interesting platform for opto-electronic devices and quantum applications.

    more » « less
  4. null (Ed.)
    van der Waals ferromagnets have gained significant interest due to their unique ability to provide magnetic response even at the level of a few monolayers. Particularly in combination with 2D semiconductors, such as the transition metal dichalcogenide WSe 2 , one can create heterostructures that feature unique magneto-optical response in the exciton emission through the magnetic proximity effect. Here we use 0D quantum emitters in WSe 2 to probe for the ferromagnetic response in heterostructures with Fe 3 GT and Fe 5 GT ferromagnets through an all-optical read-out technique that does not require electrodes. The spectrally narrow spin-doublet of the WSe 2 quantum emitters allowed to fully resolve the hysteretic magneto-response in the exciton emission, revealing the characteristic signature of both ferro- and antiferromagnetic proximity coupling that originates from the interplay among Fe 3 GT or Fe 5 GT, a thin surface oxide, and the spin doublets of the quantum emitters. Our work highlights the utility of 0D quantum emitters for probing interface magnetic dipoles in vdW heterostructures with high precision. The observed hysteretic magneto response in the exciton emission of quantum emitters adds further new degrees of freedom for spin and g -factor manipulation of quantum states. 
    more » « less
  5. Abstract

    Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of single photon emitters (SPEs) with favorable quantum properties at room temperature, making it a highly desirable element for integrated quantum photonic networks. One major challenge of using these SPEs in such applications is their low quantum efficiency. Recent studies have reported an improvement in quantum efficiency by up to two orders of magnitude when integrating an ensemble of emitters such as boron vacancy defects in multilayered hBN flakes embedded within metallic nanocavities. However, these experiments have not been extended to SPEs and are mainly focused on multiphoton effects. Here, the quantum single‐photon properties of hybrid nanophotonic structures composed of SPEs created in ultrathin hBN flakes coupled with plasmonic silver nanocubes (SNCs) are studied. The authors demonstrate 200% plasmonic enhancement of the SPE properties, manifested by a strong increase in the SPE fluorescence. Such enhancement is explained by rigorous numerical simulations where the hBN flake is in direct contact with the SNCs that cause the plasmonic effects. The presented strong and fast single photon emission obtained at room temperature with a compact hybrid nanophotonic platform can be very useful to various emerging applications in quantum optical communications and computing.

    more » « less