Abstract Complex fibrillar networks mediate liquid–liquid phase separation of biomolecular condensates within the cell. Mechanical interactions between these condensates and the surrounding networks are increasingly implicated in the physiology of the condensates and yet, the physical principles underlying phase separation within intracellular media remain poorly understood. Here, we elucidate the dynamics and mechanics of liquid–liquid phase separation within fibrillar networks by condensing oil droplets within biopolymer gels. We find that condensates constrained within the network pore space grow in abrupt temporal bursts. The subsequent restructuring of condensates and concomitant network deformation is contingent on the fracture of network fibrils, which is determined by a competition between condensate capillarity and network strength. As a synthetic analog to intracellular phase separation, these results further our understanding of the mechanical interactions between biomolecular condensates and fibrillar networks in the cell.
more »
« less
Size distributions of intracellular condensates reflect competition between coalescence and nucleation
Abstract Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here we show that both native and synthetic condensates display an exponential size distribution, which is captured by Monte Carlo simulations of fast nucleation followed by coalescence. In contrast, pathological aggregates exhibit a power-law size distribution. These distinct behaviours reflect the relative importance of nucleation and coalescence kinetics. We demonstrate this by utilizing a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. The appearance of exponential distributions for abrupt nucleation versus power-law distributions under continuous nucleation may reflect a general principle that determines condensate size distributions.
more »
« less
- Award ID(s):
- 1734030
- PAR ID:
- 10395050
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Physics
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1745-2473
- Page Range / eLocation ID:
- p. 586-596
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phase separation provides intracellular organization and underlies a variety of cellular processes. These biomolecular condensates exhibit distinct physical and material properties. Current strategies for engineering condensate formation include using intrinsically disordered domains and altering protein surface charge by chemical supercharging or site-specific mutagenesis. We propose adding to this toolbox designer peptide tags that provide several potential advantages for engineering protein phase separation in bacteria. Herein, we demonstrate the use of short cationic peptide tags for sequestration of proteins of interest into bacterial condensates and provide a foundational study for their development as tools for condensate engineering. Using a panel of GFP variants, we demonstrate how cationic tag and globular domain charge contribute to intracellular phase separation inE. coliand observe that the tag can affect condensate disassembly at a given net charge near the phase separation boundary. We showcase the broad applicability of these tags by appending them onto enzymes and demonstrating that the sequestered enzymes remain catalytically active.more » « less
-
Nuclear condensates play many important roles in chromatin functions, but how cells regulate their nucleation and growth within the complex nuclear environment is not well understood. Here, we report how condensate properties and chromatin mechanics dictate condensate growth dynamics in the nucleus. We induced condensates with distinct properties using different proteins in human cell nuclei and monitored their growth. We revealed two key physical mechanisms that underlie droplet growth: diffusion-driven or ripening-dominated growth. To explain the experimental observations, we developed a quantitative theory that uncovers the mechanical role of chromatin and condensate material properties in regulating condensate growth in a heterogeneous environment. By fitting our theory to experimental data, we find that condensate surface tension is critical in determining whether condensates undergo elastic or Ostwald ripening. Our model also predicts that chromatin heterogeneity can influence condensate nucleation and growth, which we validated by experimentally perturbing the chromatin organization and controlling condensate nucleation. By combining quantitative experimentation with theoretical modeling, our work elucidates how condensate surface tension and chromatin heterogeneity govern nuclear condensate ripening, implying that cells can control both condensate properties and the chromatin organization to regulate condensate growth in the nucleus.more » « less
-
Amon, Cristina (Ed.)The cytoskeleton is a major focus of physical studies to understand organization inside cells given its primary role in cell motility, cell division, and cell mechanics. Recently, protein condensation has been shown to be another major intracellular organizational strategy. Here, we report that the microtubule crosslinking proteins, MAP65-1 and PRC1, can form phase separated condensates at physiological salt and temperature without additional crowding agents in vitro. The size of the droplets depends on the concentration of protein. MAP65 condensates are liquid at first and can gelate over time. We show that these condensates can nucleate and grow microtubule bundles that form asters, regardless of the viscoelasticity of the condensate. The droplet size directly controls the number of projections in the microtubule asters, demonstrating that the MAP65 concentration can control the organization of microtubules. When gel-like droplets nucleate and grow asters from a shell of tubulin at the surface, the microtubules are able to re-fluidize the MAP65 condensate, returning the MAP65 molecules to solution. This work implies that there is an interplay between condensate formation from microtubule-associated proteins, microtubule organization, and condensate dissolution that could be important for the dynamics of intracellular organization.more » « less
-
Abstract Condensation by phase separation has recently emerged as a mechanism underlying many nuclear compartments essential for cellular functions. Nuclear condensates enrich nucleic acids and proteins, localize to specific genomic regions, and often promote gene expression. How diverse properties of nuclear condensates are shaped by gene organization and activity is poorly understood. Here, we develop a physics-based model to interrogate how spatially-varying transcription activity impacts condensate properties and dynamics. Our model predicts that spatial clustering of active genes can enable precise localization and de novo nucleation of condensates. Strong clustering and high activity results in aspherical condensate morphologies. Condensates can flow towards distant gene clusters and competition between multiple clusters lead to stretched morphologies and activity-dependent repositioning. Overall, our model predicts and recapitulates morphological and dynamical features of diverse nuclear condensates and offers a unified mechanistic framework to study the interplay between non-equilibrium processes, spatially-varying transcription, and multicomponent condensates in cell biology.more » « less