skip to main content


Title: Tracking the Migration of the Monarch Butterflies with the World's Smallest Computer
Each fall, millions of monarch butterflies across the U.S. and Canada migrate up to 4,000 km to overwinter in the same cluster of mountaintops in central Mexico. In spring, these migrants mate and remigrate northwards to repopulate their northern breeding territory over 2-4 partially overlapping generations. Because each migrant monarch completes only part of this round trip and does not return to the overwintering site, this navigational task cannot be learned from the prior generation. The number of monarchs completing the journey has dramatically declined in the past decades, coincident with the decreased availability of their milkweed host plant. The U.S., Mexico, and Canada have invested tremendous resources into monarch conservation efforts, including enacting specific policy initiatives, public outreach programs, and habitat protection and restoration projects. The US invested over $11 million between 2015-2017 alone [1]. Developing a tracking technology for monarch can be a key in these efforts, providing, for instance, detailed understanding of habitat use during migratory flight and dependence on weather conditions. Furthermore, it can significantly benefit animal research, and agricultural and environmental science.  more » « less
Award ID(s):
2043017
NSF-PAR ID:
10395071
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
GetMobile: Mobile Computing and Communications
Volume:
26
Issue:
1
ISSN:
2375-0529
Page Range / eLocation ID:
25 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.

    Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.

    Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.

    Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.

    Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.

     
    more » « less
  2. Each fall, millions of monarch butterflies across the northern US and Canada migrate up to 4,000 km to overwinter in the exact same cluster of mountain peaks in central Mexico. To track monarchs precisely and study their navigation, a monarch tracker must obtain daily localization of the butterfly as it progresses on its 3-month journey. And, the tracker must perform this task while having a weight in the tens of milligram (mg) and measuring a few millimeters (mm) in size to avoid interfering with monarch's flight. This paper proposes mSAIL, 8 × 8 × 2.6 mm and 62 mg embedded system for monarch migration tracking, constructed using 8 prior custom-designed ICs providing solar energy harvesting, an ultra-low power processor, light/temperature sensors, power management, and a wireless transceiver, all integrated and 3D stacked on a micro PCB with an 8 × 8 mm printed antenna. The proposed system is designed to record and compress light and temperature data during the migration path while harvesting solar energy for energy autonomy, and wirelessly transmit the data at the overwintering site in Mexico, from which the daily location of the butterfly can be estimated using a deep learning-based localization algorithm. A 2-day trial experiment of mSAIL attached on a live butterfly in an outdoor botanical garden demonstrates the feasibility of individual butterfly localization and tracking. 
    more » « less
  3. Abstract

    Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long‐distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate‐related factors best‐predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was theUSMidwest (mean annual proportion = 0.38; 95%CI: 0.36–0.41) followed by the north‐central (0.17; 0.14–0.18), northeast (0.15; 0.11–0.16), northwest (0.12; 0.12–0.16), southwest (0.11; 0.08–0.12), and southeast (0.08; 0.07–0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid‐1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional‐specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long‐term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns.

     
    more » « less
  4. Abstract

    Summer rainfall in the southeast Prairie Pothole Region (SEPPR) is an important part of a vital wetland ecosystem that various species use as their habitat. We examine sources and pathways for summer rainfall moisture, large‐scale features influencing moisture delivery, and large‐scale connections related to summer moisture using the Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Analysis of HYSPLIT back trajectories shows that land is the primary moisture source for summer rainfall events indicating moisture recycling plays an important role in precipitation generation. The Great Plains Low‐Level Jet/Maya Express is the most prominent moisture pathway. It impacts events sourced by land and the Gulf of Mexico (GoM), the secondary moisture source. There is a coupling between land, atmosphere, and ocean conveyed by large‐scale climate connections between rainfall events and sea surface temperature (SST), Palmer Drought Severity Index, and 850‐mb heights. Land‐sourced events have a connection to the northern Pacific and northwest Atlantic Oceans, soil moisture over the central U.S., and low‐pressure systems over the SEPPR. GoM‐sourced events share the connection to soil moisture over the central U.S. but also show connections to SSTs in the North Pacific and Atlantic Oceans and the GoM, soil moisture in northern Mexico, and 850‐mb heights in the eastern Pacific Ocean. Both types of events show connections to high 850‐mb heights in the Caribbean which may reflect a connection to Bermuda High. These insights into moisture sources and pathways can improve skill in SEPPR summer rainfall predictions and benefit natural resource managers in the region.

     
    more » « less
  5. Rarely have studies assessed Odonata diversity for the entire Nearctic realm by including Canada, the United States, and Mexico. For the first time, we explored Odonata diversity in this region according to a definition of natural community assemblages and generated species distribution models (SDMs). Species occurrence data were assembled by reviewing databases of specimens held by significant Odonata repositories and through an extensive search of literature references. Species were categorized as forest-dependent or non-forest-dependent, as lentic or lotic-dependent, and according to conservation status. Predicted distributions were stacked for all species across their entire ranges, including areas outside of the Nearctic. Species richness and corrected weighted endemism (CWE) were then calculated for each grid cell. We found a pattern of greater species richness in the eastern portion of the Nearctic, which can be explained by the higher aquatic habitat diversity at micro and macroscales east of the Rocky Mountains, promoting niche partitioning and specialization. In the Nearctic region, the southeastern US has the highest number of endemic species of dragonflies and damselflies; this degree of endemism is likely due to glacial refuges providing a foundation for the evolution of a rich and unique biota. 
    more » « less