skip to main content

Title: Contrasting Ocean–Atmosphere Dynamics Mediate Flood Hazard across the Mississippi River Basin

The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm more » eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.

« less
 ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Earth Interactions
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding seasonal precipitation input into river basins is important for linking large-scale climate drivers with societal water resources and the occurrence of hydrologic hazards such as floods and riverbank erosion. Using satellite data at 0.25-degree resolution, spatial patterns of monsoon (June-July-August-September) precipitation variability between 1983 and 2015 within the Ganges–Brahmaputra–Meghna (GBM) river basin are analyzed with Principal Component (PC) analysis and the first three modes (PC1, PC2 and PC3) are related to global atmospheric-oceanic fields. PC1 explains 88.7% of the variance in monsoonal precipitation and resembles climatology with the center of action over Bangladesh. The eigenvector coefficients show a downward trend consistent with studies reporting a recent decline in monsoon rainfall, but little interannual variability. PC2 explains 2.9% of the variance and shows rainfall maxima to the far western and eastern portions of the basin. PC2 has an apparent decadal cycle and surface and upper-air atmospheric height fields suggest the pattern could be forced by tropical South Atlantic heating and a Rossby wave train stemming from the North Atlantic, consistent with previous studies. Finally, PC3 explains 1.5% of the variance and has high spatial variability. The distribution of precipitation is somewhat zonal, with highest values at the southern border andmore »at the Himalayan ridge. There is strong interannual variability associated with PC3, related to the El Nino/Southern Oscillation (ENSO). Next, we perform a hydroclimatological downscaling, as precipitation attributed to the three PCs was averaged over the Pfafstetter level-04 sub-basins obtained from the World Wildlife Fund (Gland, Switzerland). While PC1 was the principal contributor of rainfall for all sub-basins, PC2 contributed the most to rainfall in the western Ganges sub-basin (4524) and PC3 contributed the most to the rainfall in the northern Brahmaputra (4529). Monsoon rainfall within these two sub-basins were the only ones to show a significant relationship (negative) with ENSO, whereas four of the eight sub-basins had a significant relationship (positive) with sea surface temperature (SST) anomalies in the tropical South Atlantic. This work demonstrates a geographic dependence on climate teleconnections in the GBM that deserves further study.« less
  2. Abstract

    Successive atmospheric river (AR) events—known as AR families—can result in prolonged and elevated hydrological impacts relative to single ARs due to the lack of recovery time between periods of precipitation. Despite the outsized societal impacts that often stem from AR families, the large-scale environments and mechanisms associated with these compound events remain poorly understood. In this work, a new reanalysis-based 39-yr catalog of 248 AR family events affecting California between 1981 and 2019 is introduced. Nearly all (94%) of the interannual variability in AR frequency is driven by AR family versus single events. Usingk-means clustering on the 500-hPa geopotential height field, six distinct clusters of large-scale patterns associated with AR families are identified. Two clusters are of particular interest due to their strong relationship with phases of El Niño–Southern Oscillation (ENSO). One of these clusters is characterized by a strong ridge in the Bering Sea and Rossby wave propagation, most frequently occurs during La Niña and neutral ENSO years, and is associated with the highest cluster-average precipitation across California. The other cluster, characterized by a zonal elongation of lower geopotential heights across the Pacific basin and an extended North Pacific jet, most frequently occurs during El Niño years andmore »is associated with lower cluster-average precipitation across California but with a longer duration. In contrast, single AR events do not show obvious clustering of spatial patterns. This difference suggests that the potential predictability of AR families may be enhanced relative to single AR events, especially on subseasonal to seasonal time scales.

    « less
  3. Abstract Precipitation is one of the most difficult variables to estimate using large-scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical–statistical downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model using multiple-linear-regression techniques for the period 1982–2016 that is based on large-scale circulation indices representing tropical Pacific Ocean, Atlantic Ocean, and South American climate variability, to estimate austral summer [December–February (DJF)] precipitation over SA. Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the Western Cordillera of the Peruvian Andes. The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over southeastern South America (SESA) during the three extreme El Niños: 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, resultsmore »further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El Niño episodes. Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic convergence zone and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.« less
  4. Abstract

    A cyclostationary linear inverse model (CSLIM) is used to investigate the seasonal growth of tropical Pacific Ocean El Niño–Southern Oscillation (ENSO) events with canonical, central Pacific (CP), or eastern Pacific (EP) sea surface temperature (SST) characteristics. Analysis shows that all types of ENSO events experience maximum growth toward final states occurring in November and December. ENSO events with EP characteristics also experience growth into May and June, but CP events do not. A single dominant “ENSO mode,” growing from an equatorial heat content anomaly into a characteristic ENSO-type SST pattern in about 9 months (consistent with the delayed/recharge oscillator model of ENSO), is essential for the predictable development of all ENSO events. Notably, its seasonality is responsible for the late-calendar-year maximum in ENSO amplification. However, this ENSO mode alone does not capture the observed growth and evolution of diverse ENSO events, which additionally involve the seasonal evolution of other nonorthogonal Floquet modes. EP event growth occurs when the ENSO mode is initially “covered up” in combination with other Floquet modes. The ENSO mode’s slow seasonal evolution allows it to emerge while the other modes rapidly evolve and/or decay, leading to strongly amplifying and more predictable EP events. CP eventsmore »develop when the initial state has a substantial contribution from Floquet modes with meridional mode–like SST structures. Thus, while nearly all ENSO events involve the seasonally varying ENSO-mode dynamics, the diversity and predictability of ENSO events cannot be understood without identifying contributions from the remaining Floquet modes.

    Significance Statement

    The purpose of this study is to identify structures that lead to seasonal growth of diverse types of El Niño–Southern Oscillation (ENSO) events. An important contribution from this study is that it uses an observationally constrained, empirically derived seasonal model. We find that processes affecting the evolution of diverse ENSO events are strongly seasonally dependent. ENSO events with eastern equatorial Pacific sea surface temperature (SST) characteristics are closely related to a single “ENSO mode” that resembles theoretical models of ENSO variability. ENSO events that have central equatorial Pacific SST characteristics include contributions from additional “meridional mode” structures that evolve via different physical processes. These findings are an important step in evaluating the seasonal predictability of ENSO diversity.

    « less
  5. Abstract El Niño and La Niña events show a wide range of durations over the historical record. The predictability of event duration has remained largely unknown, although multiyear events could prolong their climate impacts. To explore the predictability of El Niño and La Niña event duration, multiyear ensemble forecasts are conducted with the Community Earth System Model, version 1 (CESM1). The 10–40-member forecasts are initialized with observed oceanic conditions on 1 March, 1 June, and 1 November of each year during 1954–2015; ensemble spread is created through slight perturbations to the atmospheric initial conditions. The CESM1 predicts the duration of individual El Niño and La Niña events with lead times ranging from 6 to 25 months. In particular, forecasts initialized in November, near the first peak of El Niño or La Niña, can skillfully predict whether the event continues through the second year with 1-yr lead time. The occurrence of multiyear La Niña events can be predicted even earlier with lead times up to 25 months, especially when they are preceded by strong El Niño. The predictability of event duration arises from initial thermocline depth anomalies in the equatorial Pacific, as well as sea surface temperature anomalies within and outsidemore »the tropical Pacific. The forecast error growth, on the other hand, originates mainly from atmospheric variability over the North Pacific in boreal winter. The high predictability of event duration indicates the potential for extending 12-month operational forecasts of El Niño and La Niña events by one additional year.« less