skip to main content


Title: Communication Complexity of Inner Product in Symmetric Normed Spaces
We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm N on the space ℝⁿ. Here, Alice and Bob hold two vectors v,u such that ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1, where N^* is the dual norm. The goal is to compute their inner product ⟨v,u⟩ up to an ε additive term. The problem is denoted by IP_N, and generalizes important previously studied problems, such as: (1) Computing the expectation 𝔼_{x∼𝒟}[f(x)] when Alice holds 𝒟 and Bob holds f is equivalent to IP_{𝓁₁}. (2) Computing v^TAv where Alice has a symmetric matrix with bounded operator norm (denoted S_∞) and Bob has a vector v where ‖v‖₂ = 1. This problem is complete for quantum communication complexity and is equivalent to IP_{S_∞}. We systematically study IP_N, showing the following results, near tight in most cases: 1) For any symmetric norm N, given ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1 there is a randomized protocol using 𝒪̃(ε^{-6} log n) bits of communication that returns a value in ⟨u,v⟩±ε with probability 2/3 - we will denote this by ℛ_{ε,1/3}(IP_N) ≤ 𝒪̃(ε^{-6} log n). In a special case where N = 𝓁_p and N^* = 𝓁_q for p^{-1} + q^{-1} = 1, we obtain an improved bound ℛ_{ε,1/3}(IP_{𝓁_p}) ≤ 𝒪(ε^{-2} log n), nearly matching the lower bound ℛ_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(min(n, ε^{-2})). 2) One way communication complexity ℛ^{→}_{ε,δ}(IP_{𝓁_p}) ≤ 𝒪(ε^{-max(2,p)}⋅ log n/ε), and a nearly matching lower bound ℛ^{→}_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(ε^{-max(2,p)}) for ε^{-max(2,p)} ≪ n. 3) One way communication complexity ℛ^{→}_{ε,δ}(N) for a symmetric norm N is governed by the distortion of the embedding 𝓁_∞^k into N. Specifically, while a small distortion embedding easily implies a lower bound Ω(k), we show that, conversely, non-existence of such an embedding implies protocol with communication k^𝒪(log log k) log² n. 4) For arbitrary origin symmetric convex polytope P, we show ℛ_{ε,1/3}(IP_{N}) ≤ 𝒪(ε^{-2} log xc(P)), where N is the unique norm for which P is a unit ball, and xc(P) is the extension complexity of P (i.e. the smallest number of inequalities describing some polytope P' s.t. P is projection of P').  more » « less
Award ID(s):
2008733
NSF-PAR ID:
10395285
Author(s) / Creator(s):
; ;
Editor(s):
Tauman Kalai, Yael
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
251
ISSN:
1868-8969
Page Range / eLocation ID:
4:1--4:22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness. 
    more » « less
  2. Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness. 
    more » « less
  3. Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)
    A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate f:{-1,1}^k → {0,1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ n-space streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ n-space sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, Max-CSP(f) is (α(f)-ε)-approximable by an O(log n)-space linear sketching algorithm, but (α(f)+ε)-approximation sketching algorithms require Ω(√n) space. In this work, we give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2-o(1))2^{-k}-approximated by O(log n)-space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{-k}-approximations require Ω(n) space! We also resolve the ratio for the "at-least-(k-1)-1’s" function for all even k; the "exactly-(k+1)/2-1’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddle-point" properties of this dichotomy. Separately, for all threshold functions, we give optimal "bias-based" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ n-space streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})-ε)-approximations in o(√ n) space. 
    more » « less
  4. null (Ed.)
    Memory hard functions (MHFs) are an important cryptographic primitive that are used to design egalitarian proofs of work and in the construction of moderately expensive key-derivation functions resistant to brute-force attacks. Broadly speaking, MHFs can be divided into two categories: data-dependent memory hard functions (dMHFs) and data-independent memory hard functions (iMHFs). iMHFs are resistant to certain side-channel attacks as the memory access pattern induced by the honest evaluation algorithm is independent of the potentially sensitive input e.g., password. While dMHFs are potentially vulnerable to side-channel attacks (the induced memory access pattern might leak useful information to a brute-force attacker), they can achieve higher cumulative memory complexity (CMC) in comparison than an iMHF. In particular, any iMHF that can be evaluated in N steps on a sequential machine has CMC at most 𝒪((N^2 log log N)/log N). By contrast, the dMHF scrypt achieves maximal CMC Ω(N^2) - though the CMC of scrypt would be reduced to just 𝒪(N) after a side-channel attack. In this paper, we introduce the notion of computationally data-independent memory hard functions (ciMHFs). Intuitively, we require that memory access pattern induced by the (randomized) ciMHF evaluation algorithm appears to be independent from the standpoint of a computationally bounded eavesdropping attacker - even if the attacker selects the initial input. We then ask whether it is possible to circumvent known upper bound for iMHFs and build a ciMHF with CMC Ω(N^2). Surprisingly, we answer the question in the affirmative when the ciMHF evaluation algorithm is executed on a two-tiered memory architecture (RAM/Cache). We introduce the notion of a k-restricted dynamic graph to quantify the continuum between unrestricted dMHFs (k=n) and iMHFs (k=1). For any ε > 0 we show how to construct a k-restricted dynamic graph with k=Ω(N^(1-ε)) that provably achieves maximum cumulative pebbling cost Ω(N^2). We can use k-restricted dynamic graphs to build a ciMHF provided that cache is large enough to hold k hash outputs and the dynamic graph satisfies a certain property that we call "amenable to shuffling". In particular, we prove that the induced memory access pattern is indistinguishable to a polynomial time attacker who can monitor the locations of read/write requests to RAM, but not cache. We also show that when k=o(N^(1/log log N)) , then any k-restricted graph with constant indegree has cumulative pebbling cost o(N^2). Our results almost completely characterize the spectrum of k-restricted dynamic graphs. 
    more » « less
  5. Abstract

    We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$Quasi-NP=NTIME[n(logn)O(1)]and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathcal { C}$C, by showing that$\mathcal { C}$Cadmits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class${\mathcal C}$C. Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of${\sum }_{i} x_{i}$ixi. We show that for every sparsef, and for all “typical”$\mathcal { C}$C, faster#SAT algorithms for$\mathcal { C}$Ccircuits imply lower bounds against the circuit class$f \circ \mathcal { C}$fC, which may bestrongerthan$\mathcal { C}$Citself. In particular:

    #SAT algorithms fornk-size$\mathcal { C}$C-circuits running in 2n/nktime (for allk) implyNEXPdoes not have$(f \circ \mathcal { C})$(fC)-circuits of polynomial size.

    #SAT algorithms for$2^{n^{{\varepsilon }}}$2nε-size$\mathcal { C}$C-circuits running in$2^{n-n^{{\varepsilon }}}$2nnεtime (for someε> 0) implyQuasi-NPdoes not have$(f \circ \mathcal { C})$(fC)-circuits of polynomial size.

    Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJACC0THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.

     
    more » « less