Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric tspanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a tspanner G_i for S_i for all i, while minimizing the number of edges, and their total weight.
Under the L₂norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)spanner algorithm with competitive ratio O_d(ε^{d} log n), improving the previous bound of O_d(ε^{(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1d}log ε^{1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{3/2}logε^{1}log n), by comparing the online spanner with an instanceoptimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{d}) lower bound for the competitive ratio for online (1+ε)spanner algorithms in ℝ^d under the L₁norm.
Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{1}logε^{1})⋅ n^{1+1/k} edges and O(ε^{1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the tradeoff among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)spanner for ultrametrics with O(ε^{1}logε^{1})⋅ n edges and O(ε^{2}) lightness.
more »
« less
Communication Complexity of Inner Product in Symmetric Normed Spaces
We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm N on the space ℝⁿ. Here, Alice and Bob hold two vectors v,u such that ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1, where N^* is the dual norm. The goal is to compute their inner product ⟨v,u⟩ up to an ε additive term. The problem is denoted by IP_N, and generalizes important previously studied problems, such as: (1) Computing the expectation 𝔼_{x∼𝒟}[f(x)] when Alice holds 𝒟 and Bob holds f is equivalent to IP_{𝓁₁}. (2) Computing v^TAv where Alice has a symmetric matrix with bounded operator norm (denoted S_∞) and Bob has a vector v where ‖v‖₂ = 1. This problem is complete for quantum communication complexity and is equivalent to IP_{S_∞}.
We systematically study IP_N, showing the following results, near tight in most cases:
1) For any symmetric norm N, given ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1 there is a randomized protocol using 𝒪̃(ε^{6} log n) bits of communication that returns a value in ⟨u,v⟩±ε with probability 2/3  we will denote this by ℛ_{ε,1/3}(IP_N) ≤ 𝒪̃(ε^{6} log n). In a special case where N = 𝓁_p and N^* = 𝓁_q for p^{1} + q^{1} = 1, we obtain an improved bound ℛ_{ε,1/3}(IP_{𝓁_p}) ≤ 𝒪(ε^{2} log n), nearly matching the lower bound ℛ_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(min(n, ε^{2})).
2) One way communication complexity ℛ^{→}_{ε,δ}(IP_{𝓁_p}) ≤ 𝒪(ε^{max(2,p)}⋅ log n/ε), and a nearly matching lower bound ℛ^{→}_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(ε^{max(2,p)}) for ε^{max(2,p)} ≪ n.
3) One way communication complexity ℛ^{→}_{ε,δ}(N) for a symmetric norm N is governed by the distortion of the embedding 𝓁_∞^k into N. Specifically, while a small distortion embedding easily implies a lower bound Ω(k), we show that, conversely, nonexistence of such an embedding implies protocol with communication k^𝒪(log log k) log² n.
4) For arbitrary origin symmetric convex polytope P, we show ℛ_{ε,1/3}(IP_{N}) ≤ 𝒪(ε^{2} log xc(P)), where N is the unique norm for which P is a unit ball, and xc(P) is the extension complexity of P (i.e. the smallest number of inequalities describing some polytope P' s.t. P is projection of P').
more »
« less
 Award ID(s):
 2008733
 NSFPAR ID:
 10395285
 Editor(s):
 Tauman Kalai, Yael
 Date Published:
 Journal Name:
 Leibniz international proceedings in informatics
 Volume:
 251
 ISSN:
 18688969
 Page Range / eLocation ID:
 4:14:22
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric tspanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a tspanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)spanner algorithm with competitive ratio O_d(ε^{d} log n), improving the previous bound of O_d(ε^{(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1d}log ε^{1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{3/2}logε^{1}log n), by comparing the online spanner with an instanceoptimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{d}) lower bound for the competitive ratio for online (1+ε)spanner algorithms in ℝ^d under the L₁norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{1}logε^{1})⋅ n^{1+1/k} edges and O(ε^{1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the tradeoff among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)spanner for ultrametrics with O(ε^{1}logε^{1})⋅ n edges and O(ε^{2}) lightness.more » « less

Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x ⊆ [n] and Bob ends up with a set y ⊆ [n], such that (x, y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω(n) communication even to get within statistical distance 1 − β^n of the target distribution. Previously, Ambainis, Schulman, TaShma, Vazirani, and Wigderson (FOCS 1998) proved that Ω(√n) communication is required to get within some constant statistical distance ε > 0 of the uniform distribution over all pairs of disjoint sets of size √n.more » « less

Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x ⊆ [ n ] and Bob ends up with a set y ⊆ [ n ], such that ( x , y ) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω ( n ) communication even to get within statistical distance 1− β n of the target distribution. Previously, Ambainis, Schulman, TaShma, Vazirani, and Wigderson (FOCS 1998) proved that Ω (√ n ) communication is required to get within some constant statistical distance ɛ > 0 of the uniform distribution over all pairs of disjoint sets of size √ n .more » « less

Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)A Boolean maximum constraint satisfaction problem, MaxCSP(f), is specified by a predicate f:{1,1}^k → {0,1}. An nvariable instance of MaxCSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ nspace streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ nspace sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, MaxCSP(f) is (α(f)ε)approximable by an O(log n)space linear sketching algorithm, but (α(f)+ε)approximation sketching algorithms require Ω(√n) space. In this work, we give closedform expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{(k1)} (1k^{2})^{(k1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2o(1))2^{k}approximated by O(log n)space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{k}approximations require Ω(n) space! We also resolve the ratio for the "atleast(k1)1’s" function for all even k; the "exactly(k+1)/21’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closedform expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddlepoint" properties of this dichotomy. Separately, for all threshold functions, we give optimal "biasbased" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ nspace streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})ε)approximations in o(√ n) space.more » « less