skip to main content


Title: Building Blood Vessel Chips with Enhanced Physiological Relevance
Abstract

Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well‐controlled microenvironment and spatial‐temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, several critical aspects of vascular physiology are discussed, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. The state‐of‐art blood vessel chips are also reviewed that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. It is envisioned that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.

 
more » « less
NSF-PAR ID:
10395358
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
8
Issue:
7
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Placental vasculopathies are associated with a number of pregnancy‐related diseases, including pre‐eclampsia (PE)—a leading cause of maternal–fetal morbidity and mortality worldwide. Placental presentations of PE are associated with endothelial dysfunction, reduced vessel perfusion, white blood cell infiltration, and altered production of angiogenic factors within the placenta (a candidate mechanism). Despite maintaining vascular quiescence in other tissues, how pericytes contribute to vascular growth and signaling in the placenta remains unknown. Here, pericytes are hypothesized to play a detrimental role in the pathogenesis of placental vascular growth. A perfusable triculture model is developed, consisting of human endothelial cells, fibroblasts, and pericytes, capable of recapitulating growth and remodeling in a system that mimics inflamed placental microvessels. Placental pericytes are shown to contribute to growth restriction of microvessels over time, an effect that is strongly regulated by vascular endothelial growth factor and Angiopoietin/Tie2 signaling. Furthermore, this model is capable of recapitulating essential processes including tumor necrosis factor alpha (TNFα)‐mediated vascular leakage and leukocyte infiltration, both important aspects associated with placental PE. This placental vascular model highlights that an imbalance in endothelial–pericyte crosstalk can play a critical role in the development of vascular pathology and associated diseases.

     
    more » « less
  2. Background Organ‐on‐chip technology has accelerated in vitro preclinical research of the vascular system, and a key strength of this platform is its promise to impact personalized medicine by providing a primary human cell–culture environment where endothelial cells are directly biopsied from individual tissue or differentiated through stem cell biotechniques. However, these methods are difficult to adopt in laboratories, and often result in impurity and heterogeneity of cells. This limits the power of organ‐chips in making accurate physiological predictions. In this study, we report the use of blood‐derived endothelial cells as alternatives to primary and induced pluripotent stem cell–derived endothelial cells. Methods and Results Here, the genotype, phenotype, and organ‐chip functional characteristics of blood‐derived outgrowth endothelial cells were compared against commercially available and most used primary endothelial cells and induced pluripotent stem cell–derived endothelial cells. The methods include RNA‐sequencing, as well as criterion standard assays of cell marker expression, growth kinetics, migration potential, and vasculogenesis. Finally, thromboinflammatory responses under shear using vessel‐chips engineered with blood‐derived endothelial cells were assessed. Blood‐derived endothelial cells exhibit the criterion standard hallmarks of typical endothelial cells. There are differences in gene expression profiles between different sources of endothelial cells, but blood‐derived cells are relatively closer to primary cells than induced pluripotent stem cell–derived. Furthermore, blood‐derived endothelial cells are much easier to obtain from individuals and yet, they serve as an equally effective cell source for functional studies and organ‐chips compared with primary cells or induced pluripotent stem cell–derived cells. Conclusions Blood‐derived endothelial cells may be used in preclinical research for developing more robust and personalized next‐generation disease models using organ‐on‐chips. 
    more » « less
  3. Abstract

    Vascular pericytes provide critical contributions to the formation and integrity of the blood vessel wall within the microcirculation. Pericytes maintain vascular stability and homeostasis by promoting endothelial cell junctions and depositing extracellular matrix (ECM) components within the vascular basement membrane, among other vital functions. As their importance in sustaining microvessel health within various tissues and organs continues to emerge, so does their role in a number of pathological conditions including cancer, diabetic retinopathy, and neurological disorders. Here, we review vascular pericyte contributions to the development and remodeling of the microcirculation, with a focus on the local microenvironment during these processes. We discuss observations of their earliest involvement in vascular development and essential cues for their recruitment to the remodeling endothelium. Pericyte involvement in the angiogenic sprouting context is also considered with specific attention to crosstalk with endothelial cells such as through signaling regulation and ECM deposition. We also address specific aspects of the collective cell migration and dynamic interactions between pericytes and endothelial cells during angiogenic sprouting. Lastly, we discuss pericyte contributions to mechanisms underlying the transition from active vessel remodeling to the maturation and quiescence phase of vascular development.

     
    more » « less
  4. Abstract

    Since every biological system requires capillaries to support its oxygenation, design of engineered preclinical models of such systems, for example, vascularized microphysiological systems (vMPS) have gained attention enhancing the physiological relevance of human biology and therapies. But the physiology and function of formed vessels in the vMPS is currently assessed by non‐standardized, user‐dependent, and simple morphological metrics that poorly relate to the fundamental function of oxygenation of organs. Here, a chained neural network is engineered and trained using morphological metrics derived from a diverse set of vMPS representing random combinations of factors that influence the vascular network architecture of a tissue. This machine‐learned algorithm outputs a singular measure, termed as vascular network quality index (VNQI). Cross‐correlation of morphological metrics and VNQI against measured oxygen levels within vMPS revealed that VNQI correlated the most with oxygen measurements. VNQI is sensitive to the determinants of vascular networks and it consistently correlates better to the measured oxygen than morphological metrics alone. Finally, the VNQI is positively associated with the functional outcomes of cell transplantation therapies, shown in the vascularized islet‐chip challenged with hypoxia. Therefore, adoption of this tool will amplify the predictions and enable standardization of organ‐chips, transplant models, and other cell biosystems.

     
    more » « less
  5. Abstract

    The human neurovascular system is a complex network of blood vessels and brain cells that is essential to the proper functioning of the brain. Researchers have become increasingly interested in the system for developing drugs to treat neuroinflammation. Currently, creating neurovascular models begins with animal models, followed by testing on humans in clinical trials. However, the high number of medication failures that pass through animal testing indicates that animal models do not always reflect the outcome of human clinical trials. To overcome the challenges of the issues with animal models, a neurovascular‐unit‐on‐a‐chip system is developed to accurately replicate the in vivo human neurovascular microenvironment. By replicating the human neurovascular unit, a more accurate representation of human physiology can be achieved compared to animal models. The ability to detect proinflammatory cytokines in situ and monitor physiological changes can provide an invaluable tool for evaluating the efficacy and safety of drugs. Using nanosized graphene oxide for in situ detection of inflammatory responses is an innovative approach that can advance the field of neuroinflammation research. Overall, the developed neuroinflammation‐on‐a‐chip system has the potential to provide a more efficient and effective method for developing drugs for treating neurodegenerative diseases and other central nervous system diseases.

     
    more » « less