skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for methanobactin “Theft” and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation
Abstract Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known to use different mechanisms for copper uptake. Some methanotrophs secrete a modified polypeptide—methanobactin—while others utilize a surface-bound protein (MopE) and a secreted form of it (MopE*) for copper collection. As different methanotrophs have different means of sequestering copper, competition for copper significantly impacts methanotrophic activity. Herein, we show that Methylomicrobium album BG8, Methylocystis sp. strain Rockwell, and Methylococcus capsulatus Bath, all lacking genes for methanobactin biosynthesis, are not limited for copper by multiple forms of methanobactin. Interestingly, Mm. album BG8 and Methylocystis sp. strain Rockwell were found to have genes similar to mbnT that encodes for a TonB-dependent transporter required for methanobactin uptake. Data indicate that these methanotrophs “steal” methanobactin and such “theft” enhances the ability of these strains to degrade methylmercury, a potent neurotoxin. Further, when mbnT was deleted in Mm. album BG8, methylmercury degradation in the presence of methanobactin was indistinguishable from when MB was not added. Mc. capsulatus Bath lacks anything similar to mbnT and was unable to degrade methylmercury either in the presence or absence of methanobactin. Rather, Mc. capsulatus Bath appears to rely on MopE/MopE* for copper collection. Finally, not only does Mm. album BG8 steal methanobactin, it synthesizes a novel chalkophore, suggesting that some methanotrophs utilize both competition and cheating strategies for copper collection. Through a better understanding of these strategies, methanotrophic communities may be more effectively manipulated to reduce methane emissions and also enhance mercury detoxification in situ.  more » « less
Award ID(s):
1724744 1724430
PAR ID:
10395361
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
16
Issue:
1
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 211-220
Size(s):
p. 211-220
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhou, Ning-Yi (Ed.)
    ABSTRACT Methane oxidation by aerobic methanotrophs is well known to be strongly regulated by the availability of copper, i.e., the “copper switch.” That is, there are two forms of methane monooxygenase: a cytoplasmic or soluble methane monooxygenase (sMMO) and a membrane-bound or particulate methane monooxygenase (pMMO). sMMO is only expressed and active in the absence of copper, while pMMO requires copper. Previous work has also shown that one gene in the operon of the soluble methane monooxygenase—mmoD—also plays a critical role in the “copper switch,” but its function is still vague. Herein, we show that MmoD is not needed for the expression of genes in the sMMO gene cluster but is critical for the formation of sMMO polypeptides and sMMO activity inMethylosinus trichosporiumOB3b, indicating that MmoD plays a key post-transcriptional role in the maturation of sMMO. Furthermore, data also show that MmoD controls the expression of methanobactin, a copper-binding compound used by some methanotrophs, includingM. trichosporiumOB3b, for copper sequestration. Collectively, these results provide greater insights into the components of the “copper switch” and provide new strategies to manipulate methanotrophic activity. IMPORTANCEAerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity. Herein, we show that methanotrophic activity is strongly controlled by MmoD, i.e., MmoD regulates methanotrophy through the post-transcriptional regulation of the soluble methane monooxygenase and controls the ability of methanotrophs to collect copper. Such data are likely to prove quite useful in future strategies to enhance the use of methanotrophs to not only reduce methane emissions but also remove methane from the atmosphere. 
    more » « less
  2. ABSTRACT Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a “copper switch” that controls the expression of alternative methane monooxygenases and a “rare-earth element switch” that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals. 
    more » « less
  3. Tringe, Susannah Green (Ed.)
    ABSTRACT Methanotrophic bacteria play a vital role in the biogeochemical carbon cycle due to their unique ability to use CH4as a carbon and energy source. Evidence suggests that some methanotrophs, includingMethylococcus capsulatus, can also use CO2as a carbon source, making these bacteria promising candidates for developing biotechnologies targeting greenhouse gas capture and mitigation. However, a deeper understanding of the dual CH4and CO2metabolism is needed to guide methanotroph strain improvements and realize their industrial utility. In this study, we show thatM. capsulatusexpresses five carbonic anhydrase (CA) isoforms, one α-CA, one γ-CA, and three β-CAs, that play a role in its inorganic carbon metabolism and CO2-dependent growth. The CA isoforms are differentially expressed, and transcription of all isoform genes is induced in response to CO2limitation. CA null mutant strains exhibited markedly impaired growth compared to an isogenic wild-type control, suggesting that the CA isoforms have independent, non-redundant roles inM. capsulatusmetabolism and physiology. Overexpression of some, but not all, CA isoforms improved bacterial growth kinetics and decreased CO2evolution from CH4-consuming cultures. Notably, we developed an engineered methanotrophic biocatalyst overexpressing the native α-CA and β-CA with a 2.5-fold improvement in the conversion of CH4to biomass. Given that product yield is a significant cost driver of methanotroph-based bioprocesses, the engineered strain developed here could improve the economics of CH4biocatalysis, including the production of single-cell protein from natural gas or anaerobic digestion-derived biogas.IMPORTANCEMethanotrophs transform CH4into CO2and multi-carbon compounds, so they play a critical role in the global carbon cycle and are of interest for biotechnology applications. Some methanotrophs, includingMethylococcus capsulatus, can also use CO2as a carbon source, but this dual one-carbon metabolism is incompletely understood. In this study, we show thatM. capsulatuscarbonic anhydrases are critical for this bacterium to optimally utilize CO2. We developed an engineered strain with improved CO2utilization capacity that increased the overall carbon conversion to cell biomass. The improvements to methanotroph-based product yields observed here are expected to reduce costs associated with CH4conversion bioprocesses. 
    more » « less
  4. Microbial production of the neurotoxin, methylmercury (MeHg), is a significant health and environmental concern as it can bioaccumulate and biomagnify in the food web. A chalkophore or a copper-binding compound, termed methanobactin (MB), has been shown to form strong complexes with mercury [as Hg(II)] and also enables some methanotrophs to degrade MeHg. It is unknown, however, if Hg(II) binding with MB can also impede Hg(II) methylation by other microbes. Contrary to expectations, MB produced by the methanotroph Methylosinus trichosporium OB3b (OB3b-MB) enhanced the rate and efficiency of Hg(II) methylation more than that observed with thiol compounds (such as cysteine) by the mercury-methylating bacteria, D. desulfuricans ND132 and G. sulfurreducens PCA. Compared to no-MB controls, OB3b-MB decreased the rates of Hg(II) sorption and internalization, but increased methylation by 5–7 fold, suggesting that Hg(II) complexation with OB3b-MB facilitated exchange and internal transfer of Hg(II) to the HgcAB proteins required for methylation. Conversely, addition of excess amounts of OB3b-MB or a different form of MB from Methylocystis strain SB2 (SB2-MB) inhibited Hg(II) methylation, likely due to greater binding of Hg(II). Collectively our results underscore complex roles of exogenous metal-scavenging compounds produced by microbes in controlling net production and bioaccumulation of MeHg in the environment. 
    more » « less
  5. Abstract Aerobic methanotrophic bacteria are the primary organisms that consume atmospheric methane (CH4) and have potential to mitigate the climate-active gas. However, a limited understanding of the genetic determinants of methanotrophy hinders the development of biotechnologies leveraging these unique microbes. Here, we developed and optimized a methanotroph CRISPR interference (CRISPRi) system to enable functional genomic screening. We built a genome-wide single guide RNA (sgRNA) library in the industrial methanotroph,Methylococcus capsulatus, consisting of ∼45,000 unique sgRNAs mediating inducible, CRISPRi-dependent transcriptional repression. A selective screen during growth on CH4identified 233 genes whose transcription repression resulted in a fitness defect and repression of 13 genes associated with a fitness advantage. Enrichment analysis of the 233 putative essential genes linked many of the encoded proteins with critical cellular processes like ribosome biosynthesis, translation, transcription, and other central biosynthetic metabolism, highlighting the utility of CRISPRi for functional genetic screening in methanotrophs, including the identification of novel essential genes.M. capsulatusgrowth was inhibited when the CRISPRi system was used to individually target genes identified in the screen, validating their essentiality for methanotrophic growth. Collectively, our results show that the CRISPRi system and sgRNA library developed here can be used for facile gene-function analyses and genomic screening to identify novel genetic determinants of methanotrophy. These CRISPRi screening methodologies can also be applied to high-throughput engineering approaches for isolation of improved methanotroph biocatalysts. 
    more » « less