skip to main content


Title: High-throughput single-molecule quantification of individual base stacking energies in nucleic acids
Abstract

Base stacking interactions between adjacent bases in DNA and RNA are important for many biological processes and in biotechnology applications. Previous work has estimated stacking energies between pairs of bases, but contributions of individual bases has remained unknown. Here, we use a Centrifuge Force Microscope for high-throughput single molecule experiments to measure stacking energies between adjacent bases. We found stacking energies strongest between purines (G|A at −2.3 ± 0.2 kcal/mol) and weakest between pyrimidines (C|T at −0.5 ± 0.1 kcal/mol). Hybrid stacking with phosphorylated, methylated, and RNA nucleotides had no measurable effect, but a fluorophore modification reduced stacking energy. We experimentally show that base stacking can influence stability of a DNA nanostructure, modulate kinetics of enzymatic ligation, and assess accuracy of force fields in molecular dynamics simulations. Our results provide insights into fundamental DNA interactions that are critical in biology and can inform design in biotechnology applications.

 
more » « less
Award ID(s):
1651877
NSF-PAR ID:
10395665
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further interfere with viral genome replication. In this work, we computationally studied how RDV-TP binds and inserts to the SARS-CoV-2 RdRp active site, in comparison with natural nucleotide substrate adenosine triphosphate (ATP). To do that, we first constructed atomic structural models of an initial binding complex (active site open) and a substrate insertion complex (active site closed), based on high-resolution cryo-EM structures determined recently for SARS-CoV-2 RdRp or non-structural protein (nsp) 12, in complex with accessory protein factors nsp7 and nsp8. By conducting all-atom molecular dynamics simulation with umbrella sampling strategies on the nucleotide insertion between the open and closed state RdRp complexes, our studies show that RDV-TP can initially bind in a comparatively stabilized state to the viral RdRp active site, as it primarily forms base stacking with the template uracil nucleotide (nt +1), which under freely fluctuations supports a low free energy barrier of the RDV-TP insertion (∼1.5 kcal mol −1 ). In comparison, the corresponding natural substrate ATP binds initially to the RdRp active site in Watson–Crick base pairing with the template nt, and inserts into the active site with a medium low free energy barrier (∼2.6 kcal mol −1 ), when the fluctuations of the template nt are well quenched. The simulations also show that the initial base stacking of RDV-TP with the template can be specifically stabilized by motif C-S759, S682 (near motif B) with the base, and motif G-K500 with the template backbone. Although the RDV-TP insertion can be hindered by motif F-R555/R553 interaction with the triphosphate, the ATP insertion seems to be facilitated by such interactions. The inserted RDV-TP and ATP can be further distinguished by specific sugar interaction with motif B-T687 and motif A-D623, respectively. 
    more » « less
  2. RNA oligonucleotides are crucial for a range of biological functions and in many biotechnological applications. Herein, we measured, for the first time, the conductance of individual double-stranded (ds)RNA molecules and compared it with the conductance of single DNA : RNA hybrids. The average conductance values are similar for both biomolecules, but the distribution of conductance values shows an order of magnitude higher variability for dsRNA, indicating higher molecular flexibility of dsRNA. Microsecond Molecular Dynamics simulations explain this difference and provide structural insights into the higher stability of DNA : RNA duplex with atomic level of detail. The rotations of 2′-OH groups of the ribose rings and the bases in RNA strands destabilize the duplex structure by weakening base stacking interactions, affecting charge transport, and making single-molecule conductance of dsRNA more variable (dynamic disorder). The results demonstrate that a powerful combination of state-of-the-art biomolecular electronics techniques and computational approaches can provide valuable insights into biomolecules’ biophysics with unprecedented spatial resolution. 
    more » « less
  3. null (Ed.)
    DNA origami has emerged as a versatile method to synthesize nanostructures with high precision. This bottom-up self-assembly approach can produce not only complex static architectures, but also dynamic reconfigurable structures with tunable properties. While DNA origami has been explored increasingly for diverse applications, such as biomedical and biophysical tools, related mechanics are also under active investigation. Here we studied the structural properties of DNA origami and investigated the energy needed to deform the DNA structures. We used a single-layer rectangular DNA origami tile as a model system and studied its cyclization process. This origami tile was designed with an inherent twist by placing crossovers every 16 base-pairs (bp), corresponding to a helical pitch of 10.67 bp/turn, which is slightly different from that of native B-form DNA (~10.5 bp/turn). We used molecular dynamics (MD) simulations based on a coarse-grained model on an open-source computational platform, oxDNA. We calculated the energies needed to overcome the initial curvature and induce mechanical deformation by applying linear spring forces. We found that the initial curvature may be overcome gradually during cyclization and a total of ~33.1 kcal/mol is required to complete the deformation. These results provide insights into the DNA origami mechanics and should be useful for diverse applications such as adaptive reconfiguration and energy absorption. 
    more » « less
  4. Protein–DNA interactions play an important role in various biological processes such as gene expression, replication, and transcription. Understanding the important features that dictate the binding affinity of protein-DNA complexes and predicting their affinities is important for elucidating their recognition mechanisms. In this work, we have collected the experimental binding free energy (ΔG) for a set of 391 Protein-DNA complexes and derived several structure-based features such as interaction energy, contact potentials, volume and surface area of binding site residues, base step parameters of the DNA and contacts between different types of atoms. Our analysis on relationship between binding affinity and structural features revealed that the important factors mainly depend on the number of DNA strands as well as functional and structural classes of proteins. Specifically, binding site properties such as number of atom contacts between the DNA and protein, volume of protein binding sites and interaction-based features such as interaction energies and contact potentials are important to understand the binding affinity. Further, we developed multiple regression equations for predicting the binding affinity of protein-DNA complexes belonging to different structural and functional classes. Our method showed an average correlation and mean absolute error of 0.78 and 0.98 kcal/mol, respectively, between the experimental and predicted binding affinities on a jack-knife test. We have developed a webserver, PDA-PreD (Protein-DNA Binding affinity predictor), for predicting the affinity of protein-DNA complexes and it is freely available at https://web.iitm.ac.in/bioinfo2/pdapred/ 
    more » « less
  5. Abstract

    The structures of zinc carbene ZnCH2and zinc carbyne HZnCH, and the conversion transition states between them are optimized at B3LYP/aug‐cc‐pVTZ, MP2/aug‐cc‐pVTZ, and CCSD/aug‐cc‐pVTZ levels of theory. The thermodynamic energies with CCSD(T) method are further extrapolated to basis set limit through a series of basis sets of aug‐cc‐pVXZ (X=D, T, Q, 5). The Zn−C bonding characteristics are interpreted by molecular plots, Laplacian of density plots, the integrated delocalization indices, net atomic charges, and derived atomic hardness. On the one hand, the studies demonstrated the efficiency of DFT method in structure optimizations and the accuracy of CBS method in obtaining thermodynamic energies; On the other hand, the density analysis of CCSD/aug‐cc‐pVDZ density demonstrates that both the sharing interaction and ionic interaction are important in ZnCH2ad HZnCH. The3B1state of ZnCH2is the global minimum and formed in visible light, but its small bond dissociation energy (47.0 kcal/mol) cannot keep the complex intact under UV light (79.4–102.1 kcal/mol). However, the3Σstate of HZnCH can survive the UV light due to the greater Zn−C dissociation energy (100.7 kcal/mol). The delocalization indices of Zn…C in both3B1of ZnCH2(0.777) and the3Σstate of HZnCH (0.785) are close to the delocalization index of the single C−C bond of ethane (0.841), i. e. the nomenclature of Zinc carbene and Zinc carbyne is incorrect. The stronger Zn−C bond in the3Σstate of HZnCH than in the3B1state of ZnCH2can be attributed to the larger charge separation in the former. It was found that the Zn−C bonds in related Zinc organic compounds were also single bonds no matter whether the organic groups are CR, CR2, or CR3. The ionic interactions were discussed in terms of the atomic hardness that were in turn related to ionization energy and electron affinity. The unique combination of covalent and ionic characteristics in the Zn−C bonds of organic Zinc compounds could be the origin of many interesting applications of organic Zinc reagents.

     
    more » « less