skip to main content


Title: The sequence of prime gaps is graphic
Abstract

Let us call a simple graph on$$n\geqslant 2$$n2vertices a prime gap graph if its vertex degrees are 1 and the first$$n-1$$n-1prime gaps. We show that such a graph exists for every largen, and in fact for every$$n\geqslant 2$$n2if we assume the Riemann hypothesis. Moreover, an infinite sequence of prime gap graphs can be generated by the so-called degree preserving growth process. This is the first time a naturally occurring infinite sequence of positive integers is identified as graphic. That is, we show the existence of an interesting, and so far unique, infinite combinatorial object.

 
more » « less
PAR ID:
10395693
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mathematische Annalen
Volume:
388
Issue:
2
ISSN:
0025-5831
Format(s):
Medium: X Size: p. 2195-2215
Size(s):
p. 2195-2215
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We establish rapid mixing of the random-cluster Glauber dynamics on random$$\varDelta $$Δ-regular graphs for all$$q\ge 1$$q1and$$pp<pu(q,Δ), where the threshold$$p_u(q,\varDelta )$$pu(q,Δ)corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite)$$\varDelta $$Δ-regular tree. It is expected that this threshold is sharp, and for$$q>2$$q>2the Glauber dynamics on random$$\varDelta $$Δ-regular graphs undergoes an exponential slowdown at$$p_u(q,\varDelta )$$pu(q,Δ). More precisely, we show that for every$$q\ge 1$$q1,$$\varDelta \ge 3$$Δ3, and$$pp<pu(q,Δ), with probability$$1-o(1)$$1-o(1)over the choice of a random$$\varDelta $$Δ-regular graph onnvertices, the Glauber dynamics for the random-cluster model has$$\varTheta (n \log n)$$Θ(nlogn)mixing time. As a corollary, we deduce fast mixing of the Swendsen–Wang dynamics for the Potts model on random$$\varDelta $$Δ-regular graphs for every$$q\ge 2$$q2, in the tree uniqueness region. Our proof relies on a sharp bound on the “shattering time”, i.e., the number of steps required to break up any configuration into$$O(\log n)$$O(logn)sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.

     
    more » « less
  2. Abstract

    A well-known open problem of Meir and Moser asks if the squares of sidelength 1/nfor$$n\ge 2$$n2can be packed perfectly into a rectangle of area$$\sum _{n=2}^\infty n^{-2}=\pi ^2/6-1$$n=2n-2=π2/6-1. In this paper we show that for any$$1/21/2<t<1, and any$$n_0$$n0that is sufficiently large depending on t, the squares of sidelength$$n^{-t}$$n-tfor$$n\ge n_0$$nn0can be packed perfectly into a square of area$$\sum _{n=n_0}^\infty n^{-2t}$$n=n0n-2t. This was previously known (if one packs a rectangle instead of a square) for$$1/21/2<t2/3(in which case one can take$$n_0=1$$n0=1).

     
    more » « less
  3. Abstract

    LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$[0,1]kwhere$$k \ge 2$$k2. According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$x1,x2,,xnthrough thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$i=1n|xi-xi+1|k1/kck, where$$|x-y|$$|x-y|is the Euclidean distance betweenxandy, and$$c_k$$ckis an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$xn+1x1. From the other direction, for every$$k \ge 2$$k2and$$n \ge 2$$n2, there existnpoints in$$[0,1]^k$$[0,1]k, such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$i=1n|xi-xi+1|k1/k=21/k·k. For the plane, the best constant is$$c_2=2$$c2=2and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ck=9231/k·kfor every$$k \ge 3$$k3and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ck=21/k·k, for every$$k \ge 2$$k2. Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ck=35231/k·kor$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ck=2.91k(1+ok(1)). Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$c327/6, which disproves the conjecture for$$k=3$$k=3. Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.

     
    more » « less
  4. Abstract

    Let$$\phi $$ϕbe a positive map from the$$n\times n$$n×nmatrices$$\mathcal {M}_n$$Mnto the$$m\times m$$m×mmatrices$$\mathcal {M}_m$$Mm. It is known that$$\phi $$ϕis 2-positive if and only if for all$$K\in \mathcal {M}_n$$KMnand all strictly positive$$X\in \mathcal {M}_n$$XMn,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ϕ(KX-1K)ϕ(K)ϕ(X)-1ϕ(K). This inequality is not generally true if$$\phi $$ϕis merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$Tr[ϕ(KX-1K)]Tr[ϕ(K)ϕ(X)-1ϕ(K)]holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.

     
    more » « less
  5. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.

     
    more » « less