We will present exact solutions for three variations of the stochastic Korteweg de Vries–Burgers (KdV–Burgers) equation featuring variable coefficients. In each variant, white noise exhibits spatial uniformity, and the three categories include additive, multiplicative, and advection noise. Across all cases, the coefficients are timedependent functions. Our discovery indicates that solving certain deterministic counterparts of KdV–Burgers equations and composing the solution with a solution of stochastic differential equations leads to the exact solution of the stochastic Korteweg de Vries–Burgers (KdV–Burgers) equations.
more »
« less
Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation
Abstract. Nonlinear oceanic internal solitary waves are considered under the influence of the combined effects of saturating nonlinearity, Earth's rotation, and horizontal depth inhomogeneity. Here the basic model is the extended Korteweg–de Vries equation that includes both quadratic and cubic nonlinearity (the Gardner equation) with additional terms incorporating slowly varying depth and weak rotation. The complicated interplay between these different factors is explored using an approximate adiabatic approach and then through numerical solutions of the governing variable depth, i.e., the rotating Gardner model. These results are also compared to analysis in the Korteweg–de Vries limit to highlight the effect of the cubic nonlinearity. The study explores several particular cases considered in the literature that included some of these factors to illustrate limitations. Solutions are made to illustrate the relevance of this extended Gardner model for realistic oceanic conditions.
more »
« less
- Award ID(s):
- 1736698
- PAR ID:
- 10395704
- Date Published:
- Journal Name:
- Nonlinear Processes in Geophysics
- Volume:
- 29
- Issue:
- 2
- ISSN:
- 1607-7946
- Page Range / eLocation ID:
- 207 to 218
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider two types of the generalized Korteweg–de Vries equation, where the nonlinearity is given with or without absolute values, and, in particular, including the low powers of nonlinearity, an example of which is the Schamel equation. We first prove the local well-posedness of both equations in a weighted subspace of H 1 that includes functions with polynomial decay, extending the result of Linares et al (2019 Commun. Contemp. Math. 21 1850056) to fractional weights. We then investigate solutions numerically, confirming the well-posedness and extending it to a wider class of functions that includes exponential decay. We include a comparison of solutions to both types of equations, in particular, we investigate soliton resolution for the positive and negative data with different decay rates. Finally, we study the interaction of various solitary waves in both models, showing the formation of solitons, dispersive radiation and even breathers, all of which are easier to track in nonlinearities with lower power.more » « less
-
For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set of N--soliton states, and their associated multisoliton solutions. We prove that (i) this set is a uniformly smooth manifold, and (ii) the$$\mathbf {M}_{N}$$ states are uniformly stable in H^s for each s>-1/2. One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.more » « less
-
null (Ed.)The semi-classical Korteweg–de Vries equation for step-like data is considered with a small parameter in front of the highest derivative. Using perturbation analysis, Whitham theory is constructed to the higher order. This allows the order one phase and the complete leading-order solution to be obtained; the results are confirmed by extensive numerical calculations.more » « less
-
A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al. ( Phys. Rev. Lett. , vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models.more » « less
An official website of the United States government

