skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biological, Physical, and Atmospheric Controls on the Distribution of Cadmium and Its Isotopes in the Pacific Ocean
Abstract Despite the Pacific being the location of the earliest seawater Cd studies, the processes which control Cd distributions in this region remain incompletely understood, largely due to the sparsity of data. Here, we present dissolved Cd and δ114Cd data from the US GEOTRACES GP15 meridional transect along 152°W from the Alaskan margin to the equatorial Pacific. Our examination of this region's surface ocean Cd isotope systematics is consistent with previous observations, showing a stark disparity between northern Cd‐rich high‐nutrient low‐chlorophyll waters and Cd‐depleted waters of the subtropical and equatorial Pacific. Away from the margin, an open system model ably describes data in Cd‐depleted surface waters, but atmospheric inputs of isotopically light Cd likely play an important role in setting surface Cd isotope ratios (δ114Cd) at the lowest Cd concentrations. Below the surface, Southern Ocean processes and water mass mixing are the dominant control on Pacific Cd and δ114Cd distributions. Cd‐depleted Antarctic Intermediate Water has a far‐reaching effect on North Pacific intermediate waters as far as 47°N, contrasting with northern‐sourced Cd signatures in North Pacific Intermediate Water. Finally, we show that the previously identified negative Cd* signal at depth in the North Pacific is associated with the PO4maximum and is thus a consequence of an integrated regeneration signal of Cd and PO4at a slightly lower Cd:P ratio than the deep ocean ratio (0.35 mmol mol−1), rather than being related to in situ removal processes in low‐oxygen waters.  more » « less
Award ID(s):
1737136 1737167 1756104 1756103
PAR ID:
10395793
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
2
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cadmium is a trace metal of interest in the ocean partly because its concentration mimics that of phosphate. However, deviations from the global mean dissolved Cd/PO 4 relationship are present in oxygen deficient zones, where Cd is depleted relative to phosphate. This decoupling has been suggested to result from cadmium sulphide (CdS) precipitation in reducing microenvironments within sinking organic matter. We present Cd concentrations and Cd isotope compositions in organic-rich sediments deposited at several upwelling sites along the northeast Pacific continental margin. These sediments all have enriched Cd concentrations relative to crustal material. We calculate a net accumulation rate of Cd in margin settings of between 2.6 to 12.0 × 10 7  mol/yr, higher than previous estimates, but at the low end of a recently published estimate for the magnitude of the marine sink due to water column CdS precipitation. Cadmium in organic-rich sediments is isotopically light ( δ 114/110 Cd NIST-3108 = +0.02 ± 0.14‰, n = 26; 2 SD) compared to deep seawater (+0.3 ± 0.1‰). However, isotope fractionation during diagenesis in continental margin settings appears to be small. Therefore, the light Cd isotope composition of organic-rich sediments is likely to reflect an isotopically light source of Cd. Non-quantitative biological uptake of light Cd by phytoplankton is one possible means of supplying light Cd to the sediment, which would imply that Cd isotopes could be used as a tracer of past ocean productivity. However, water column CdS precipitation is also predicted to preferentially sequester light Cd isotopes from the water column, which could obfuscate Cd as a tracer. We also observe notably light Cd isotope compositions associated with elevated solid phase Fe concentrations, suggesting that scavenging of Cd by Fe oxide phases may contribute to the light Cd isotope composition of sediments. These multiple possible sources of isotopically light Cd to sediments, along with evidence for complex particle cycling of Cd in the water column, bring into question the straightforward application of Cd isotopes as a paleoproductivity proxy. 
    more » « less
  2. Abstract The North Pacific has played an important role in ongoing discussions on the origin of the global correlation between oceanic dissolved Zn and Si, while data in the North Pacific have remained sparse. Here, we present dissolved Zn and δ66Zn data from the US GEOTRACES GP15 meridional transect along 152°W from Alaska to the South Pacific. In the south (<20°N) Zn and Si exhibit a tight linear correlation reflecting strong Southern Ocean influence, while in the north (>20°N) an excess of Zn relative to Si in upper and intermediate waters is due to regeneration of Zn together with PO4. Using a mechanistic model, we show that reversible scavenging is required as an additional process transferring Zn from the upper to the deep ocean, explaining the deep Zn maximum below the PO4maximum. This mechanism applied for reversible scavenging also provides an explanation for the observed isotope distribution: (a) fractionation during ligand binding and subsequent removal of residual heavy Zn in the upper ocean, drives the upper ocean toward lower δ66Zn, while (b) release of heavy Zn then coincides with the PO4maximum where carrier particles regenerate, causing a mid‐depth δ66Zn maximum. In the upper ocean, seasonal physical stratification is an additional important process influencing shallow δ66Zn signals. At the global scale, this mechanism invoking fractionation during ligand binding coupled with reversible scavenging offers a global explanation for isotopically light Zn at shallow depths and corresponding elevated mid‐depth δ66Zn signals, seen dominantly in ocean regions away from strong Southern Ocean control. 
    more » « less
  3. Abstract Systematic regional variations in the ratio of nutrient depth gradients of dissolved inorganic carbon (ΔDIC):nitrate (ΔNO3):phosphate (ΔPO4) in the upper layer (300 m) of the Pacific Ocean are observed. Regional variations in the ΔDIC/ΔNO3/ΔPO4are primarily the result of three processes, that is, the C/N/P of organic matter (OM) being exported and subsequently degraded, nitrogen fixation, and air‐sea CO2gas exchange. The link between the observed dissolved ΔDIC/ΔNO3/ΔPO4and the C/N/P of exported OM is established using surface layer dissolved DIC, NO3, and PO4budgets. These budgets, in turn, provide a means to indirectly estimate the C/N/P of OM being exported from the surface layer of the ocean. The indirectly estimated C/N/P of exported OM reach maxima in the subtropical gyres at 177/22/1, that is, significantly greater than the Redfield ratio and a minimum in the equatorial ocean at 109/16/1 with both results agreeing with available observed particle C/N/P and ocean biogeochemical models. The budget approach was applied to a bioactive trace element (TE) using the measured dissolved Cadmium (Cd) to PO4gradients to estimate the Cd/P of exported OM in the Pacific Ocean. Combining the budget method with the availability of high‐quality dissolved nutrient and TE data collected during the GOSHIP and GEOTRACES programs could potentially provide estimates of the C/N/P/TE of exported OM on global ocean scales which would significantly improve our understanding of the link between the ocean's biological pump and dissolved nutrient distributions in the upper ocean. 
    more » « less
  4. Goodkin, Nathalie (Ed.)
    Abstract Most oceanic lead (Pb) is from anthropogenic emissions into the atmosphere deposited into surface waters, mostly during the past two centuries. The space‐ and time‐dependent emission patterns of anthropogenic Pb (and its isotope ratios) constitute a global geochemical experiment providing information on advective, mixing, chemical, and particle flux processes redistributing Pb within the ocean. Pb shares aspects of its behavior with other elements, for example, atmospheric input, dust solubilization, biological uptake, and reversible exchange between dissolved and adsorbed Pb on sinking particles. The evolving distributions allow us to see signals hidden in steady‐state tracer distributions. The global anthropogenic Pb emission experiment serves as a tool to understand oceanic trace element dynamics. We obtained a high‐resolution (5° station spacing) depth transect of dissolved Pb concentrations and Pb isotopes from Alaska (55°N) to just north of Tahiti (20°S) near 152°W longitude. The sections reveal distinct sources of Pb (American, Australian, and Chinese), transport of Australian style Pb to the water mass formation region of Sub‐Antarctic Mode Water which is advected northward, columnar Pb isotope contours due to reversible particle exchange on sinking particles from high‐productivity particle veils, and a gradient of high northern deep water [Pb] to low southern deep water [Pb] that is created by reversible exchange release of Pb from sinking particles carrying predominantly northern hemisphere Pb.208Pb/206Pb versus206Pb/207Pb isotope relationships show that most oceanic Pb in the North Pacific is from Chinese and American sources, whereas Pb in the South Pacific is from Australian and American sources. 
    more » « less
  5. Abstract Dissolved organic nitrogen (DON) is the dominant form of fixed nitrogen in most low and middle latitude ocean surface waters. Here, we report measurements of DON isotopic composition (δ15N) from the west South China Sea (SCS), with the goal of providing new insight into DON cycling. The concentration of DON in the surface ocean is correlated (r = 0.70,p < 0.0001) with chlorophyllaconcentration, indicating DON production in these surface waters. The concentration and δ15N of DON fall in a relatively narrow range in the surface ocean (4.6 ± 0.1 μM and 4.3 ± 0.2‰ vs. air, respectively; ±SD), similar to other ocean regions. The mean DON δ15N above 50 m (4.5 ± 0.3‰) is similar to the δ15N of nitrate in the “shallow subsurface” (i.e., immediately below the euphotic zone; 4.6 ± 0.2‰) but is higher than the δ15N of suspended particles in the surface ocean (~2.3‰). This set of isotopic relationships has been observed previously (e.g., in the oligotrophic North Atlantic and North Pacific) and can be explained by the cycling of N between particulate organic nitrogen (PON), DON, and ammonium, in which an isotope effect associated with DON degradation preferentially concentrates15N in DON. Consistent with this view, a negative correlation (r = 0.70) between the concentration and the δ15N of DON is observed in the upper 75 m, suggesting an isotope effect of ~4.9 ± 0.4‰ for DON degradation. Comparing the DON δ15N data from the SCS with other regions, we find that the δ15N difference between euphotic zone DON and shallow subsurface nitrate δ15N (Δδ15N(DON‐NO3)) rises from ocean regions of inferred net DON production to regions of net DON consumption, with the SCS representing an intermediate case. 
    more » « less