skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon
Rationale

Back‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern.

Methods

Implanted Na (<2.0 × 1011ions/cm2, peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode.

Results

Back‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself.

Conclusions

Combining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times.

 
more » « less
PAR ID:
10395828
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
37
Issue:
6
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Minor and trace elements in diamond-like carbon (DLC) are difficult to quantify using SIMS analysis because minor elemental and structural variations can result in major matrix effects even across individual, cm-sized samples. While this material is most commonly used for tribological coatings where minor element composition is not of critical importance, it is being increasingly used in electronic devices. However, it is a unique application that spurred this work: anhydrous, tetrahedrally-coordinated DLC (ta-C) was used as a solar wind (SW) collector material in the Genesis solar-wind sample return mission (NASA Discovery 5). So, for ∼15 years, we have been working on attaining accurate and precise measurement of minor and trace elements in the Genesis DLC using SIMS to achieve our mission goals. Specifically, we have learned to deal with relevant matrix effects in our samples, ion implants into ta-C. Our unknown element for quantification is SW Mg, a low-dose (1.67 × 10 12 at cm −2 ; ∼6 μg g −1 24 Mg), low-energy (∼24 keV average energy) implant; our standard is a high-dose (∼1 × 10 14 at cm −2 of both 25 Mg, 26 Mg) 75 keV laboratory implant for which the absolute 26 Mg/ 25 Mg ratio had been measured to account for variable instrumental mass fractionation. Analyses were performed using O 2 + primary ions having both a low impact energy and a current density of ∼2 × 10 14 ions per cm 2 . Although our unknown was solar wind, the method is applicable to many situations where minor elements in DLC need to be quantified. Recommendations are presented for modifying this data-reduction technique for other SIMS conditions. 
    more » « less
  2. Abstract

    Based on the predictions of global 3D hybrid simulations, we present a new transport/acceleration path for escaped O+ions in the upstream solar wind region resulting from the impact of a particular IMF tangential discontinuity (TD) with negative (positive) IMFBzon the discontinuity's anti‐sunward (sunward) side. For O+ions escaping to the duskside magnetosheath and with gyro‐radii larger than the TD thickness, when they encounter the TD, they can first go sunward into the upstream solar wind. They then gyrate clockwise to the pre‐noon side and get accelerated within the solar wind region and circulate back to the dawnside magnetosphere. These ions may be accelerated to well within the ring current energy range depending on the solar wind electric field strength. This new transport/acceleration path can bring some of the escaped ions into the inner magnetosphere, thus providing a new mechanism for generating an O+ring current population.

     
    more » « less
  3. ABSTRACT Introduction

    The cervical spine, pivotal for mobility and overall body function, can be affected by cervical spondylosis, a major contributor to neural disorders. Prevalent in both general and military populations, especially among pilots, cervical spondylosis induces pain and limits spinal capabilities. Anterior Cervical Discectomy and Fusion (ACDF) surgery, proposed by Cloward in the 1950s, is a promising solution for restoring natural cervical curvature. The study objective was to investigate the impacts of ACDF implant design on postsurgical cervical biomechanics and neurorehabilitation outcomes by utilizing a biofield head-neck finite element (FE) platform that can facilitate scenario-specific perturbations of neck muscle activations. This study addresses the critical need to enhance computational models, specifically FE modeling, for ACDF implant design.

    Materials and Methods

    We utilized a validated head-neck FE model to investigate spine–implant biomechanical interactions. An S-shaped dynamic cage incorporating titanium (Ti) and polyetheretherketone (PEEK) materials was modeled at the C4/C5 level. The loading conditions were carefully designed to mimic helmet-to-helmet impact in American football, providing a realistic and challenging scenario. The analysis included intervertebral joint motion, disk pressure, and implant von Mises stress.

    Results

    The PEEK implant demonstrated an increased motion in flexion and lateral bending at the contiguous spinal (C4/C5) level. In flexion, the Ti implant showed a modest 5% difference under 0% activation conditions, while PEEK exhibited a more substantial 14% difference. In bending, PEEK showed a 24% difference under 0% activation conditions, contrasting with Ti’s 17%. The inclusion of the head resulted in an average increase of 18% in neck angle and 14% in C4/C5 angle. Disk pressure was influenced by implant material, muscle activation level, and the presence of the head. Polyetheretherketone exhibited lower stress values at all intervertebral disc levels, with a significant effect at the C6/C7 levels. Muscle activation level significantly influenced disk stress at all levels, with higher activation yielding higher stress. Titanium implant consistently showed higher disk stress values than PEEK, with an orders-of-magnitude difference in von Mises stress. Excluding the head significantly affected disk and implant stress, emphasizing its importance in accurate implant performance simulation.

    Conclusions

    This study emphasized the use of a biofidelic head-neck model to assess ACDF implant designs. Our results indicated that including neck muscles and head structures improves biomechanical outcome measures. Furthermore, unlike Ti implants, our findings showed that PEEK implants maintain neck motion at the affected level and reduce disk stresses. Practitioners can use this information to enhance postsurgery outcomes and reduce the likelihood of secondary surgeries. Therefore, this study makes an important contribution to computational biomechanics and implant design domains by advancing computational modeling and theoretical knowledge on ACDF–spine interaction dynamics.

     
    more » « less
  4. Abstract

    Orbital implants are necessary for reconstructing fractured orbital walls and are traditionally fabricated using titanium or polyethylene, but these materials result in medical complications such as increased risk of implant migration and hemorrhaging. Therefore, orbital implants constructed from biocompatible and biodegradable polymers have been recently researched to mitigate these risks. Material extrusion three-dimensional (3D) printing techniques, especially fused deposition modeling (FDM), can be applied to produce patient-specific orbital implants. However, current structures fabricated by FDM usually possess poor mechanical properties and high surface roughness. In this work, an embedded FDM method is designed and implemented to fabricate polycaprolactone (PCL) orbital implants with increased mechanical properties and surface morphology through the development and utilization of a temperature-stable yield-stress suspension comprised of fumed silica particles and a sunflower oil solvent. The rheological properties of the suspension were measured and tuned to produce a viable support bath material above the melting temperature of PCL. Filaments, single-layer sheets, and tensile test samples were printed to optimize the printing parameters, verify the surface morphology, and validate the mechanical properties, respectively. After that, a numerical simulation was performed to determine the mechanical robustness of the designed orbital implant model. Finally, the orbital implant was printed, measured, and implanted into a mock-up orbital socket to verify the viability of the proposed embedded FDM method.

     
    more » « less
  5. Rationale

    A two‐component matrix of 2‐nitrophloroglucinol (2‐NPG) and silica nanoparticles was used for matrix‐assisted laser desorption ionization (MALDI) mass spectrometry imaging of high‐charge‐state biomolecules in tissue. Potential advantages include increased effective mass range and efficiency of fragmentation.

    Methods

    A mixture of 2‐NPG matrix and silica nanoparticles was applied to cyrosectioned 10 μm thick mouse brain tissue. The mixture was pipetted onto the tissue for profiling and sprayed for tissue imaging. MALDI images were obtained under high vacuum in a commercial time‐of‐flight mass spectrometer.

    Results

    The combined 2‐NPG and nanoparticle matrix produced highly charged ions from tissue with high‐vacuum MALDI. Nanoparticles of 20, 70, 400, and 1000 nm in diameter were tested, the 20 nm particles producing the highest charge states. Images of mouse brain tissue obtained from highly charged ions show similar spatial localization.

    Conclusions

    The combined 2‐NPG and nanoparticle matrix produces highly charged ions from tissue through a mechanism that may rely on the high surface area of the particles which can dry the tissue, and their ability to bind analyte molecules thereby assisting in crystal formation and production of multiply charged ions on laser irradiation.

     
    more » « less