skip to main content

Title: Hubbard Brook Experimental Forest: Droughtnet soil moisture, temperature and soil water potential
Abstract
The forest drought experiment prototype at Hubbard Brook was constructed in 2015, as part of the International Drought Experiment (IDE) coordinated by the DroughtNet Research Coordination Network. The throughfallMore>>
Creator(s):
; ; ; ; ;
Publisher:
Environmental Data Initiative
Publication Year:
NSF-PAR ID:
10395886
Award ID(s):
1637685
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    To evaluate the effects of ice storm disturbance on forest canopy structure and complexity terrestrial lidar data were collected within the Hubbard Brook Ice Storm Experiment plots starting in 2015 (prior to ice treatment) and annually thereafter. Data were collected using a ground-based portable canopy lidar (PCL) system during the growing season in August of each year along 5 permanently marked 30 m transects in each 20 x 30 m ISE plot. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
  2. Abstract
    Resin available soil solution nitrogen was measured during seasonal incubations in 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018). https://doi.org/10.1007/s10533-018-0422-5
  3. Abstract
    The valley-wide plots are a grid of 431 sites along fifteen N–S transects established at 500-m intervals spanning the entire Hubbard Brook Valley. The plot network was designed by Paul Schwarz for spatial analysis of tree species distribution patterns within the valley. Multiple above- and below-ground attributes have been measured on these plots. This dataset includes forest inventory data at 10 year intervals, for 1995, 2005, and 2015. The full survey takes three seasons to complete, with the datatable listing the exact measurement interval for each tree. Data are included for both trees and saplings on 371 core plots (all surveys) and 60 densified plots (1998, 2008). Locations of plots in this study can be found in the following dataset: Hubbard Brook Experimental Forest Valleywide Plots: GIS Shapefile (2022.) https://doi.org/10.6073/pasta/440b176372e0cdeb341731aea816b67c These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data have been used in a number of publications including: Schwarz, P.A., Fahey, T.J., Martin, C.W., Siccama, T.G., and Bailey, A. 2001. Structure and composition of three northern hardwood–conifer forestsMore>>
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Abstract
    Leaf area index (LAI) of the mature deciduous forest adjacent to WS6 at Hubbard Brook Experimental Forest is estimated on the basis of leaf litterfall collections; the raw data for litterfall are posted in the EDI data package – Fine Litterfall Data at the Hubbard Brook Experimental Forest, 1992 – present (https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=49). These plots are designated TF, referring to throughfall chemistry collections performed at these plots many years ago (Lovett et al. 1996). Leaf litterfall is collected in 0.097 m2 litter traps raised 1.5 m above ground level and is sorted by species. The number of leaves of each species is counted. The counts are multiplied by the average area per leaf for each species in each plot to estimate LAI. Litter traps are located randomly within each of three plots that are arranged along the elevation gradient within the deciduous forest zone. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Gary M. Lovett, Scott S. Nolan, Charles T. Driscoll, and Timothy J. Fahey. Factors regulating throughfall flux inMore>>