skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple Element Limitation in Northeast Hardwood Ecosystems (MELNHE): Root cores and mycorrhizal colonization
Root cores were obtained in 2010 (pre-treatment) from two soil depths, 0-10 cm and 30-50 cm, in two MELNHE stands, C5 and C7, at Bartlett Experimental Forest. Arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) colonization and root length were quantified in each core to determine if AM or EM was more prevalent in shallow or deep soils. Detailed description and analyses of these data can be found in: Nash, J.M., Diggs, F.M. & Yanai, R.D. Length and colonization rates of roots associated with arbuscular or ectomycorrhizal fungi decline differentially with depth in two northern hardwood forests. Mycorrhiza 32, 213–219 (2022). https://doi.org/10.1007/s00572-022-01071-8 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685
PAR ID:
10395912
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Root cores were obtained in 2010 (pre-treatment) from two soil depths, 0-10 cm and 30-50 cm, in two MELNHE stands, C5 and C7, at Bartlett Experimental Forest. Arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) colonization and root length were quantified in each core to determine if AM or EM was more prevalent in shallow or deep soils. Detailed description and analyses of these data can be found in: Nash, J.M., Diggs, F.M. & Yanai, R.D. Length and colonization rates of roots associated with arbuscular or ectomycorrhizal fungi decline differentially with depth in two northern hardwood forests. Mycorrhiza 32, 213–219 (2022). https://doi.org/10.1007/s00572-022-01071-8 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  2. Recent work suggests mycorrhizal fungi are important drivers of soil organic matter dynamics; however, whether this is a result of the fungi themselves or related traits of their host trees remains unclear. We evaluated how tree mycorrhizal associations and foliar chemistry influence mineral-associated organic matter (MAOM) and particulate organic matter (POM) in temperate forests of northern New England, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N of three soil density fractions beneath six tree species that vary in both mycorrhizal association and foliar chemistry. We found a significant decline in the concentration of MAOM C and N with increasing foliar C:N in soil beneath tree species with arbuscular mycorrhizal (AM), but not ectomycorrhizal (ECM) fungi. The C:N of POM and MAOM was positively associated with the foliar C:N of the dominant tree species in a forest, and MAOM C:N was also higher beneath ECM- rather than AM-associated tree species. These results add to the growing body of support for mycorrhizal fungi as predictors of soil C and N dynamics, and suggest that C concentration in the MAOM fraction is more sensitive to organic matter chemistry beneath AM-associated tree species. Because MAOM decomposition is thought to be less responsive than POM decomposition to changes in soil temperature and moisture, differences in the tendency of AM- vs. ECM-dominated forests to support MAOM formation and persistence may lead to systematic differences in the response of these forest types to ongoing climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. This data package contains 5 m LiDAR-derived topographic metrics across Hubbard Brook EF following the approach reported by (Gillin et al., 2015). The LiDAR was collected during leaf-off and snow-free conditions by Photo Science, Inc. in April 2012 for the White Mountain National Forest (WMNF). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Gillin, C.P., S.W. Bailey, K.J. McGuire, and J.P. Gannon. 2015. Mapping of Hydropedologic Spatial Patterns in a Steep Headwater Catchment. Soil Sci. Soc. Am. J. 79(2): 440–453. doi: 10.2136/sssaj2014.05.0189. 
    more » « less
  4. We sampled soils on watershed 5 at the Hubbard Brook Experimental Forest in 1983, prior to a whole-tree harvest conducted in the winter of 1983-84. We resampled in 1986, 1991, and 1998. All sampling was performed using a quantitative soil pit method. Samples of the combined Oi and Oe horizons; the Oa horizon; 0-10 cm, 10-20 cm, and >20 cm layers of mineral soil; and the C horizon were collected. Grab samples of pedogenic mineral horizons were also taken from the sides of a subset of pits in each year. Here we report soil chemistry, mass of soil, percent rock, bulk density, and organic matter. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  
    more » « less
  5. We sampled soils on watershed 5 at the Hubbard Brook Experimental Forest in 1983, prior to a whole-tree harvest conducted in the winter of 1983-84. We resampled in 1986, 1991, and 1998. All sampling was performed using a quantitative soil pit method. Samples of the combined Oi and Oe horizons; the Oa horizon; 0-10 cm, 10-20 cm, and >20 cm layers of mineral soil; and the C horizon were collected. Grab samples of pedogenic mineral horizons were also taken from the sides of a subset of pits in each year. Here we report soil chemistry, mass of soil, percent rock, bulk density, and organic matter. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  
    more » « less