Discovery of enantioselective catalytic reactions for the preparation of chiral compounds from readily available precursors, using scalable and environmentally benign chemistry, can greatly impact their design, synthesis, and eventually manufacture on the scale. Functionalized cyclobutanes and cyclobutenes are important structural motifs seen in many bioactive natural products and pharmaceutically relevant small molecules. The simplest approach to make cyclobutenes is through an enantioselective [2 + 2]-cycloaddition between an alkyne and an alkenyl derivative. Known reactions of this class that give acceptable enantioselectivities are of very narrow scope and are strictly limited to activated alkynes and highly reactive alkenes. Here, we disclose a broadly applicable enantioselective [2 + 2]-cycloaddition between a wide variety of alkynes and alkenyl derivatives, two of the most abundant classes of organic precursors. The key cycloaddition reaction employs catalysts derived from readily synthesized ligands and an earth-abundant metal, cobalt. Over 50 different functionalized cyclobutenes with enantioselectivities in the range of 86–97% ee are documented. In addition to this development, some of the novel observations made during these studies including a key role of a cationic Co (I)-intermediate, ligand and counter ion effects on the reactions, will be discussed. 
                        more » 
                        « less   
                    
                            
                            Chemodivergent, Regio‐ and Enantioselective Cycloaddition Reactions between 1,3‐Dienes and Alkynes
                        
                    
    
            Abstract Alkynes and 1,3‐dienes are among the most readily available precursors for organic synthesis. We report two distinctly different, catalyst‐dependent, modes of regio‐ and enantioselective cycloaddition reactions between these classes of compounds providing rapid access to highly functionalized 1,4‐cyclohexadienesorcyclobutenes from thesameprecursors. Complexes of an earth abundant metal, cobalt, with several commercially available chiral bisphosphine ligands with narrow bite angles catalyze [4+2]‐cycloadditions between a 1,3‐diene and an alkyne giving a cyclohexa‐1,4‐diene in excellent chemo‐, regio‐ and enantioselectivities. In sharp contrast, complex of a finely tuned phosphino‐oxazoline ligand promotes unique [2+2]‐cycloaddition between the alkyne and the terminal double bond of the diene giving a highly functionalized cyclobutene in excellent regio‐ and enantioselectivities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900141
- PAR ID:
- 10396004
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 8
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4-pi electrons or 2-pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail.more » « less
- 
            Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4 pi electrons or 2 pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail.more » « less
- 
            ABSTRACT: Enantiopure homoallylic boronate esters are versatile intermediates because the C–B bond in these com-pounds can be stereospecifically transformed into C–C, C–O and C–N bonds. Regio- and enantioselective synthesis of these precursors from 1,3-dienes has few precedents in the literature. We have identified reaction conditions and ligands for the synthesis of nearly enantiopure (er >97:3 to >99:1) homoallylic boronate esters via a rarely seen cobalt-catalyzed [4,3]-hydroboration of 1,3-dienes. Monosubstituted or 2,4-disubstituted linear dienes undergo highly efficient, regio- and enanti-oselective hydroboration with HBPin catalyzed by [(L*)Co]+[BARF]–, where L* is typically a chiral bis-phosphine ligand with a narrow bite angle. Several such ligands (examples: i-PrDuPhos, QuinoxP*, Duanphos and, BenzP*) that give high enantioselectivities for the [4,3]-hydroboration product have been identified. In addition, the equally challenging problem of regioselectivity is uniquely solved with a dibenzooxaphosphole ligand, (R,R)-MeO-BIBOP. A cationic cobalt(I) complex of this ligand is a very efficient (TON >960) catalyst, while providing excellent regioselectivities (rr >98:2) and enantioselectiv-ities (er >98:2) for a broad range of substrates. A detailed computational investigation of the reactions using Co-complexes from two widely different ligands (BenzP* and MeO-BIBOP) employing B3LYP-D3 density functional theory provides key insights into the mechanism and the origins of selectivities. The computational results are in full agreement with the exper-iments. For the complexes we have examined thus far, the relative stabilities of the diastereomeric diene-bound complexes [(L*)Co(4-diene)]+ leads to the initial diastereofacial selectivity, which in turn is retained in the subsequent steps, providing exceptional enantioselectivity for the reactions.more » « less
- 
            Abstract We report herein a Cu‐catalyzed regio‐, diastereo‐ and enantioselective acylboration of 1,3‐butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)‐β,γ‐unsaturated ketones bearing an α‐tertiary stereocenter with highZ‐selectivity and excellent enantioselectivities. While direct access to highly enantioenrichedE‐isomers was not successful, we showed that such molecules can be synthesized with excellentE‐selectivity and optical purities via Pd‐catalyzed alkene isomerization from the correspondingZ‐isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
